These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11541960)

  • 21. Alkyl and omega-amino alkyl agaroses as probes of light-induced changes in phytochrome from pea seedlings (Pisum sativum cv. Alaska).
    Yamamoto KT; Smith WO
    Biochim Biophys Acta; 1981 Mar; 668(1):27-34. PubMed ID: 7236707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium and magnesium ATPases of the spectrin fraction of human erythrocytes.
    Kirkpatrick FH; Woods GM; La Celle PL; Weed RI
    J Supramol Struct; 1975; 3(5-6):415-25. PubMed ID: 128659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats.
    Roux SJ; McEntire K; Slocum RD; Cedel TE; Hale CC
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):283-7. PubMed ID: 16592951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of HCO3- on anion-stimulated ATPase from rat parotid granules.
    Dowd F; Vasavada B; Nazeri A; Hicks J; Makoid M
    Arch Oral Biol; 1991; 36(5):371-5. PubMed ID: 1651695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular localization of phytochrome in Robinia pseudoacacia pulvini.
    Moysset L; Fernández E; Cortadellas N; Simón E
    Planta; 2001 Aug; 213(4):565-74. PubMed ID: 11556789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light.
    Chen YR; Roux SJ
    Plant Physiol; 1986; 81(2):609-13. PubMed ID: 11538660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectrophotometric phytochrome measurements in light-grown Avena sativa L.
    Jabben M; Deitzer GF
    Planta; 1978 Jan; 143(3):309-13. PubMed ID: 24408470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liver and brain mitochondrial ATPase activities in rats exposed to high ambient temperature.
    Suchocka Z; Bicz W
    Acta Physiol Pol; 1985; 36(3):185-92. PubMed ID: 2943138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of functional oat phytochrome A in transgenic rice.
    Clough RC; Casal JJ; Jordan ET; Christou P; Vierstra RD
    Plant Physiol; 1995 Nov; 109(3):1039-45. PubMed ID: 8552709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of surface-exposed parts of red-light- and far-red-light-absorbing forms of native pea phytochrome by limited proteolysis.
    Nakazawa M; Hayashi H; Yoshida Y; Manabe K
    Plant Cell Physiol; 1993 Jan; 34(1):83-91. PubMed ID: 8025822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature- and Mg-ATP-dependent regulation of Ca2+ sensitivity of smooth muscle actomyosin ATPase.
    Bose R; Hinton A; King GM
    Am J Physiol; 1979 Nov; 237(5):C213-20. PubMed ID: 158984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved detection of conformational changes in oat phytochrome A: time-dependent diffusion.
    Eitoku T; Zarate X; Kozhukh GV; Kim JI; Song PS; Terazima M
    Biophys J; 2006 Nov; 91(10):3797-804. PubMed ID: 16935954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium and phytochrome control of leaf unrolling in dark-grown barley seedlings.
    Viner N; Whitelam G; Smith H
    Planta; 1988 Aug; 175(2):209-13. PubMed ID: 24221714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Ca2(+)-activated, Mg2(+)-dependent ATPase with high affinities for both Ca2+ and Mg2+ in vascular smooth muscle microsomes: comparison with plasma membrane Ca2(+)-pump ATPase.
    Sun HT; Yoshida Y; Imai S
    J Biochem; 1990 Nov; 108(5):730-6. PubMed ID: 1964453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical properties of cardiac sarcolemma: adenylate cyclase and (Na++K+)-activated ATPase.
    Tada M; Kirchberger MA; Katz AM
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():117-31. PubMed ID: 176692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-induced global structural changes in phytochrome A regulating photomorphogenesis in plants.
    Nakasako M; Iwata T; Inoue K; Tokutomi S
    FEBS J; 2005 Jan; 272(2):603-12. PubMed ID: 15654897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of intracellular redistribution of phytochrome in Avena coleoptiles after its photoconversion to the active, far-red-absorbing form.
    McCurdy DW; Pratt LH
    Planta; 1986 Mar; 167(3):330-6. PubMed ID: 24240300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of native oat phytochrome photoreversion: a time-resolved absorption investigation.
    Chen E; Lapko VN; Lewis JW; Song PS; Kliger DS
    Biochemistry; 1996 Jan; 35(3):843-50. PubMed ID: 8547264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid.
    Daye S; Biro RL; Roux SJ
    Physiol Plant; 1984 Jul; 61(3):449-54. PubMed ID: 11829020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrimination between the red- and far-red-absorbing forms of phytochrome from Avena sativa L. by monoclonal antibodies.
    Thomas B; Penn SE; Butcher GW; Galfre G
    Planta; 1984 Mar; 160(4):382-4. PubMed ID: 24258587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.