These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11542005)

  • 1. Alanine synthesis from glyceraldehyde and ammonium ion in aqueous solution.
    Weber AL
    J Mol Evol; 1985; 21():351-5. PubMed ID: 11542005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic formation of 'energy-rich' thioesters from glyceraldehyde and N-acetylcysteine.
    Weber AL
    Orig Life Evol Biosph; 1984; 15():17-27. PubMed ID: 11541968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonenzymatic formation of "energy-rich" lactoyl and glyceroyl thioesters from glyceraldehyde and a thiol.
    Weber AL
    J Mol Evol; 1984; 20(2):157-66. PubMed ID: 6433034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde.
    Weber AL
    J Mol Evol; 1983; 19(3-4):237-43. PubMed ID: 6887266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligoglyceric acid synthesis by autocondensation of glyceroyl thioester.
    Weber AL
    J Mol Evol; 1987; 25():191-6. PubMed ID: 11542077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar-driven prebiotic synthesis of 3,5(6)-dimethylpyrazin-2-one: a possible nucleobase of a primitive replication process.
    Weber AL
    Orig Life Evol Biosph; 2008 Aug; 38(4):279-92. PubMed ID: 18581252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia.
    Weber AL
    Orig Life Evol Biosph; 1998 Jun; 28(3):259-70. PubMed ID: 9611766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synthesis of glutamic acid in the absence of enzymes: implications for biogenesis.
    Morowitz H; Peterson E; Chang S
    Orig Life Evol Biosph; 1995 Aug; 25(4):395-9. PubMed ID: 11536704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of the Amadori compound N-(1-deoxy-D-fructos-1-yl)glycine in aqueous model systems.
    Davidek T; Clety N; Aubin S; Blank I
    J Agric Food Chem; 2002 Sep; 50(19):5472-9. PubMed ID: 12207494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric [2,3]-rearrangement of glycine-derived allyl ammonium ylids.
    Workman JA; Garrido NP; Sançon J; Roberts E; Wessel HP; Sweeney JB
    J Am Chem Soc; 2005 Feb; 127(4):1066-7. PubMed ID: 15669822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis of dialanine formation by glycine in the salt-induced peptide formation reaction.
    Suwannachot Y; Rode BM
    Orig Life Evol Biosph; 1998 Feb; 28(1):79-90. PubMed ID: 11536857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the reactions between daptomycin and glyceraldehyde.
    Muangsiri W; Kearney WR; Teesch LM; Kirsch LE
    Int J Pharm; 2005 Jan; 289(1-2):133-50. PubMed ID: 15652206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of ammonium ion from aqueous solution using magnetically modified zeolite.
    Nah IW; Hwang KY; Shul YG; Jeon C
    Environ Technol; 2008 Jun; 29(6):633-9. PubMed ID: 18702289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of glyceraldehyde synthesis by primary or secondary amino acids under prebiotic conditions as a function of pH.
    Breslow R; Ramalingam V; Appayee C
    Orig Life Evol Biosph; 2013 Oct; 43(4-5):323-9. PubMed ID: 24346788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I--reaction mechanism.
    Martins SI; Marcelis AT; van Boekel MA
    Carbohydr Res; 2003 Jul; 338(16):1651-63. PubMed ID: 12873421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The investigation of the HCN derivative diiminosuccinonitrile as a prebiotic condensing agent. The formation of phosphate esters.
    Ferris JP; Yanagawa H; Dudgeon PA; Hagan WJ; Mallare TE
    Orig Life Evol Biosph; 1984; 15():29-43. PubMed ID: 11541969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds.
    Srokol Z; Bouche AG; van Estrik A; Strik RC; Maschmeyer T; Peters JA
    Carbohydr Res; 2004 Jul; 339(10):1717-26. PubMed ID: 15220081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion-pair formation as a source of enhanced reactivity of the essential thiol group of D-glyceraldehyde-3-phosphate dehydrogenase.
    Polgár L
    Eur J Biochem; 1975 Feb; 51(1):63-71. PubMed ID: 235434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific interactions of ammonium functionalities in amino acids with aqueous fluoride and iodide.
    Mason PE; Heyda J; Fischer HE; Jungwirth P
    J Phys Chem B; 2010 Nov; 114(43):13853-60. PubMed ID: 20939557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved procedure for the synthesis of dehydroamino acids and dehydropeptides from the carbonate derivatives of serine and threonine using tetrabutylammonium fluoride.
    Ramapanicker R; Mishra R; Chandrasekaran S
    J Pept Sci; 2010 Mar; 16(3):123-5. PubMed ID: 20112295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.