BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11542007)

  • 1. Potential-derived point-charge model study of electrostatic interaction energies in some hydrogen-bonded systems.
    Ray NK; Shibata M; Bolis G; Rein R
    Int J Quantum Chem; 1985; 27():427-37. PubMed ID: 11542007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions.
    Werneck AS; Filho TM; Dardenne LE
    J Phys Chem A; 2008 Jan; 112(2):268-80. PubMed ID: 18095663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of counterpoise correction and basis set extrapolation on the MP2 geometries of hydrogen bonded dimers of ammonia, water, and hydrogen fluoride.
    Boese AD; Jansen G; Torheyden M; Höfener S; Klopper W
    Phys Chem Chem Phys; 2011 Jan; 13(3):1230-8. PubMed ID: 21103475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential derived point charge model study of electrostatic interaction energies in some complexes of water with uracil, thymine, and cytosine.
    Ray NK; Bolis G; Shibata M; Rein R
    Int J Quantum Chem Quantum Biol Symp; 1984; 11():257-66. PubMed ID: 11540815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the calculations of interaction energies and induced electric properties within the polarizable continuum model.
    Zawada A; Góra RW; Mikołajczyk MM; Bartkowiak W
    J Phys Chem A; 2012 May; 116(17):4409-16. PubMed ID: 22483388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrogen bonding properties of cytosine: a computational study of cytosine complexed with hydrogen fluoride, water, and ammonia.
    Hunter KC; Rutledge LR; Wetmore SD
    J Phys Chem A; 2005 Oct; 109(42):9554-62. PubMed ID: 16866407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides.
    Sokalski WA; Keller DA; Ornstein RL; Rein R
    J Comput Chem; 1993; 14(8):970-6. PubMed ID: 11539835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The important role of lone-pairs in force field (MM4) calculations on hydrogen bonding in alcohols.
    Lii JH; Allinger NL
    J Phys Chem A; 2008 Nov; 112(46):11903-13. PubMed ID: 18942820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in the understanding of drug-receptor interactions, part 2: experimental and theoretical electrostatic moments and interaction energies of an angiotensin II receptor antagonist (C30H30N6(O)3S).
    Soave R; Barzaghi M; Destro R
    Chemistry; 2007; 13(24):6942-56. PubMed ID: 17539033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the electrostatic interaction between nucleic acid bases.
    Toczyłowski RR; Cybulski SM
    J Chem Phys; 2005 Oct; 123(15):154312. PubMed ID: 16252953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-derived point-charge model study of electrostatic interactions in DNA base components.
    Ray NK; Shibata M; Bolis G; Rein R
    Chem Phys Lett; 1984 Aug; 109(4):352-8. PubMed ID: 11541979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging.
    Hughes TJ; Kandathil SM; Popelier PL
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt A():32-41. PubMed ID: 24274986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields.
    Hermida-Ramón JM; Brdarski S; Karlström G; Berg U
    J Comput Chem; 2003 Jan; 24(2):161-76. PubMed ID: 12497597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation.
    Jakalian A; Jack DB; Bayly CI
    J Comput Chem; 2002 Dec; 23(16):1623-41. PubMed ID: 12395429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate interaction energies of hydrogen-bonded nucleic acid base pairs.
    Sponer J; Jurecka P; Hobza P
    J Am Chem Soc; 2004 Aug; 126(32):10142-51. PubMed ID: 15303890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge density and electrostatic potential analyses in paracetamol.
    Bouhmaida N; Bonhomme F; Guillot B; Jelsch C; Ghermani NE
    Acta Crystallogr B; 2009 Jun; 65(Pt 3):363-74. PubMed ID: 19461147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of error-ranked singular value decomposition for the determination of potential-derived atomic-centered point charges.
    Tan JS; Boerrigter SX; Scaringe RP; Morris KR
    J Comput Chem; 2009 Apr; 30(5):733-42. PubMed ID: 18727155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.