These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11542029)

  • 1. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals.
    Tannenbaum E; Ruth E; Kaplan IR
    Geochim Cosmochim Acta; 1986; 50():805-12. PubMed ID: 11542029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of minerals in the thermal alteration of organic matter--I: generation of gases and condensates under dry condition.
    Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1985; 49():2589-604. PubMed ID: 11539655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California.
    Tannenbaum E; Ruth E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10(1-3 Pt 1):531-6. PubMed ID: 11540875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile organic acids generated from kerogen during laboratory heating.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Geochem J; 1986; 20():51-9. PubMed ID: 11542117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of minerals in the thermal alteration of organic matter--IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():1083-97. PubMed ID: 11542080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of minerals in thermal alteration of organic matter--II: a material balance.
    Tannenbaum E; Huizinga BJ; Kaplan IR
    Am Assoc Pet Geol Bull; 1986 Sep; 70(9):1156-65. PubMed ID: 11542070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of minerals in the thermal alteration of organic matter--III. Generation of bitumen in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Org Geochem; 1987; 11(6):591-604. PubMed ID: 11542118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen.
    Tannenbaum E; Kaplan IR
    Nature; 1985 Oct; 317():708-9. PubMed ID: 11539657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-chain carboxylic acids in pyrolysates of Green River kerogen.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10():1059-65. PubMed ID: 11542045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free and kerogen-bound biomarkers from late Tonian sedimentary rocks record abundant eukaryotes in mid-Neoproterozoic marine communities.
    Zumberge JA; Rocher D; Love GD
    Geobiology; 2020 May; 18(3):326-347. PubMed ID: 31865640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids.
    Kawamura K; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():3201-7. PubMed ID: 11542084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of modified montmorillonites on the biodegradation and adsorption of biomarkers such as hopanes, steranes and diasteranes.
    Ugochukwu UC; Head IM; Manning DA
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8881-9. PubMed ID: 23749373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confined-pyrolysis as an experimental method for hydrothermal organic synthesis.
    Leif RN; Simoneit BR
    Orig Life Evol Biosph; 1995 Oct; 25(5):417-29. PubMed ID: 11536697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the Spectrum Research on the Process of Oil Shale Pyrolysis].
    Lan XZ; Luo WJ; Song YH; Zhang QL; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Apr; 36(4):1121-6. PubMed ID: 30052011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrocarbons preserved in a ~2.7 Ga outcrop sample from the Fortescue Group, Pilbara Craton, Western Australia.
    Hoshino Y; Flannery DT; Walter MR; George SC
    Geobiology; 2015 Mar; 13(2):99-111. PubMed ID: 25393450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uranium-bearing stratiform organic matter in paleoplacers of the lower Huronian Supergroup, Elliot Lake--Blind River region, Canada.
    Willingham TO; Nagy B; Nagy LA; Krinsley DH; Mossman DJ
    Can J Earth Sci; 1985; 22():1930-44. PubMed ID: 11542012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach.
    Alafnan S; Solling T; Mahmoud M
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reappraisal of hydrocarbon biomarkers in Archean rocks.
    French KL; Hallmann C; Hope JM; Schoon PL; Zumberge JA; Hoshino Y; Peters CA; George SC; Love GD; Brocks JJ; Buick R; Summons RE
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5915-20. PubMed ID: 25918387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.