BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11542091)

  • 1. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum.
    Kristjansson H; Sadler MH; Hochstein LI
    FEMS Microbiol Rev; 1986; 39():151-7. PubMed ID: 11542091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum.
    Kristjansson H; Hochstein LI
    Arch Biochem Biophys; 1985 Sep; 241(2):590-5. PubMed ID: 2931049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase.
    Hochstein LI
    FEMS Microbiol Lett; 1992 Oct; 76(1-2):155-9. PubMed ID: 11537859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypsin digestion for determining orientation of ATPase in Halobacterium saccharovorum membrane vesicles.
    Kristjansson H; Hochstein LI
    FEMS Microbiol Lett; 1986; 35():171-5. PubMed ID: 11542047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases.
    Stan-Lotter H; Bowman EJ; Hochstein LI
    Arch Biochem Biophys; 1991 Jan; 284(1):116-9. PubMed ID: 1824911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The purification and subunit structure of a membrane-bound ATPase from the Archaebacterium Halobacterium saccharovorum.
    Hochstein LI; Kristjansson H; Altekar W
    Biochem Biophys Res Commun; 1987 Aug; 147(1):295-300. PubMed ID: 2888461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP synthase.
    Stan-Lotter H; Hochstein LI
    Eur J Biochem; 1989 Jan; 179(1):155-60. PubMed ID: 2521826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits.
    Stan-Lotter H; Sulzner M; Egelseer E; Norton CF; Hochstein LI
    Orig Life Evol Biosph; 1993 Feb; 23(1):53-64. PubMed ID: 11536526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A membrane-bound ATPase from Halobacterium halobium: purification and characterization.
    Nanba T; Mukohata Y
    J Biochem; 1987 Sep; 102(3):591-8. PubMed ID: 2962994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the Paracoccus halodenitrificans ATPase a chimeric enzyme?
    Hochstein LI
    FEMS Microbiol Lett; 1996 Jun; 140(1):55-60. PubMed ID: 11536735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic site is located on subunit I of the ATPase from Halobacterium saccharovorum. A direct photoaffinity labeling study.
    Bonet ML; Schobert B
    Eur J Biochem; 1992 Jul; 207(1):369-76. PubMed ID: 1385781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide-protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum.
    Sulzner M; Stan-Lotter H; Hochstein LI
    Arch Biochem Biophys; 1992 Jul; 296(1):347-9. PubMed ID: 1534982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteretic behavior of an ATPase from the archaebacterium, Halobacterium saccharovorum.
    Schobert B; Lanyi JK
    J Biol Chem; 1989 Aug; 264(22):12805-12. PubMed ID: 2526810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of proteolipid from an extremely halophilic archaeon Halobacterium salinarum as an N,N'-dicyclohexyl-carbodiimide binding subunit of ATP synthase.
    Ihara K; Watanabe S; Sugimura K; Katagiri I; Mukohata Y
    Arch Biochem Biophys; 1997 May; 341(2):267-72. PubMed ID: 9169014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP synthesis catalyzed by purified DCCD-sensitive ATPase incorporated into reconstituted purple membrane vesicles.
    Yoshida M; Sone N; Hirata H; Kagawa Y
    Biochem Biophys Res Commun; 1975 Dec; 67(4):1295-300. PubMed ID: 1031
    [No Abstract]   [Full Text] [Related]  

  • 16. Adenosine triphosphatase activity of Ureaplasma urealyticum.
    Romano N; Tolone G; La Licata R
    Microbiologica; 1982 Jan; 5(1):25-33. PubMed ID: 6287175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcus aureus adenosine triphosphatase: inhibitor sensitivity and release from membrane.
    Kubak BM; Yotis WW
    J Bacteriol; 1981 Apr; 146(1):385-90. PubMed ID: 6452444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum.
    Schobert B
    J Biol Chem; 1992 May; 267(15):10252-7. PubMed ID: 1534083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy coupling in the active transport of amino acids by bacteriohodopsin-containing cells of Halobacterium holobium.
    Hubbard JS; Rinehart CA; Baker RA
    J Bacteriol; 1976 Jan; 125(1):181-90. PubMed ID: 128552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of membrane adenosine triphosphatase of the obligately anaerobic bacterium Veillonella alcalescens.
    Yoshimura F
    J Biochem; 1978 May; 83(5):1231-8. PubMed ID: 149119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.