These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 11542103)
1. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. Jorgensen BB; Des Marais DJ FEMS Microbiol Ecol; 1986; 38():179-86. PubMed ID: 11542103 [TBL] [Abstract][Full Text] [Related]
2. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. D'Amelio ED; Cohen Y; Des Marais DJ Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090 [TBL] [Abstract][Full Text] [Related]
3. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Canfield DE; Des Marais DJ Geochim Cosmochim Acta; 1993 Aug; 57(16):3971-84. PubMed ID: 11537735 [TBL] [Abstract][Full Text] [Related]
4. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. Decker KL; Potter CS; Bebout BM; Marais DJ; Carpenter S; Discipulo M; Hoehler TM; Miller SR; Thamdrup B; Turk KA; Visscher PT FEMS Microbiol Ecol; 2005 May; 52(3):377-95. PubMed ID: 16329922 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Jorgensen BB; Cohen Y; Des Marais DJ Appl Environ Microbiol; 1987 Apr; 53(4):879-86. PubMed ID: 11536572 [TBL] [Abstract][Full Text] [Related]
6. Aerobic sulfate reduction in microbial mats. Canfield DE; Des Marais DJ Science; 1991 Mar; 251():1471-3. PubMed ID: 11538266 [TBL] [Abstract][Full Text] [Related]
7. Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. Fike DA; Gammon CL; Ziebis W; Orphan VJ ISME J; 2008 Jul; 2(7):749-59. PubMed ID: 18528418 [TBL] [Abstract][Full Text] [Related]
8. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
9. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Jorgensen BB; Des Marais DJ Limnol Oceanogr; 1988; 33(1):99-113. PubMed ID: 11539749 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Kamp A; Stief P; Schulz-Vogt HN Appl Environ Microbiol; 2006 Jul; 72(7):4755-60. PubMed ID: 16820468 [TBL] [Abstract][Full Text] [Related]
11. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations. Madigan MT; Takigiku R; Lee RG; Gest H; Hayes JM Appl Environ Microbiol; 1989 Mar; 55(3):639-44. PubMed ID: 11536609 [TBL] [Abstract][Full Text] [Related]
12. Calcium dynamics in microbialite-forming exopolymer-rich mats on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Ionescu D; Spitzer S; Reimer A; Schneider D; Daniel R; Reitner J; de Beer D; Arp G Geobiology; 2015 Mar; 13(2):170-80. PubMed ID: 25515845 [TBL] [Abstract][Full Text] [Related]
13. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Canfield DE; Thamdrup B Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246 [TBL] [Abstract][Full Text] [Related]
14. Impact of bacterial NO3(-) transport on sediment biogeochemistry. Sayama M; Risgaard-Petersen N; Nielsen LP; Fossing H; Christensen PB Appl Environ Microbiol; 2005 Nov; 71(11):7575-7. PubMed ID: 16269807 [TBL] [Abstract][Full Text] [Related]
15. Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies. Camacho A; Rochera C; Silvestre JJ; Vicente E; Hahn MW Microb Ecol; 2005 Aug; 50(2):172-84. PubMed ID: 16211325 [TBL] [Abstract][Full Text] [Related]
16. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-d) by a hypersaline microbial mat and related functional changes in the mat community. Grötzschel S; Köster J; de Beer D Microb Ecol; 2004 Aug; 48(2):254-62. PubMed ID: 15546044 [TBL] [Abstract][Full Text] [Related]
17. [Physilogical and biochemical properties of bacteria of Chromatium genus, isolated from water bodies enriched with hydrogen sulfide]. Pavlova IuO; Hnatush SO; Hudz' SP Mikrobiol Z; 2009; 71(6):43-53. PubMed ID: 20455432 [TBL] [Abstract][Full Text] [Related]
18. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. de Beer D; Weber M; Chennu A; Hamilton T; Lott C; Macalady J; M Klatt J Environ Microbiol; 2017 Mar; 19(3):1251-1265. PubMed ID: 28035767 [TBL] [Abstract][Full Text] [Related]
19. Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Grünke S; Felden J; Lichtschlag A; Girnth AC; De Beer D; Wenzhöfer F; Boetius A Geobiology; 2011 Jul; 9(4):330-48. PubMed ID: 21535364 [TBL] [Abstract][Full Text] [Related]
20. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the gulf of Mexico. Zhang CL; Huang Z; Cantu J; Pancost RD; Brigmon RL; Lyons TW; Sassen R Appl Environ Microbiol; 2005 Apr; 71(4):2106-12. PubMed ID: 15812044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]