BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11542117)

  • 1. Volatile organic acids generated from kerogen during laboratory heating.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Geochem J; 1986; 20():51-9. PubMed ID: 11542117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals.
    Tannenbaum E; Ruth E; Kaplan IR
    Geochim Cosmochim Acta; 1986; 50():805-12. PubMed ID: 11542029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of minerals in thermal alteration of organic matter--II: a material balance.
    Tannenbaum E; Huizinga BJ; Kaplan IR
    Am Assoc Pet Geol Bull; 1986 Sep; 70(9):1156-65. PubMed ID: 11542070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of minerals in the thermal alteration of organic matter--I: generation of gases and condensates under dry condition.
    Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1985; 49():2589-604. PubMed ID: 11539655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of minerals in the thermal alteration of organic matter--IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():1083-97. PubMed ID: 11542080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of minerals in the thermal alteration of organic matter--III. Generation of bitumen in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Org Geochem; 1987; 11(6):591-604. PubMed ID: 11542118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-chain carboxylic acids in pyrolysates of Green River kerogen.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10():1059-65. PubMed ID: 11542045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids.
    Kawamura K; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():3201-7. PubMed ID: 11542084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen.
    Tannenbaum E; Kaplan IR
    Nature; 1985 Oct; 317():708-9. PubMed ID: 11539657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California.
    Tannenbaum E; Ruth E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10(1-3 Pt 1):531-6. PubMed ID: 11540875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.
    Toulkeridis T; Goldstein SL; Clauer N; Kroner A; Lowe DR
    Geology; 1994 Mar; 22(3):199-202. PubMed ID: 11540244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation.
    Ferris JP; Kamaluddin
    Orig Life Evol Biosph; 1989; 19():609-19. PubMed ID: 11538680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kerogen-bound and free hopanoic acids in the messel oil shale kerogen.
    Abbott GD; Bashir FZ; Sugden MA
    Chirality; 2001 Aug; 13(8):510-6. PubMed ID: 11466776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment.
    Ahn MY; Filley TR; Jafvert CT; Nies L; Hua I; Bezares-Cruz J
    Environ Sci Technol; 2006 Jan; 40(1):215-20. PubMed ID: 16433354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions.
    Hoch M; Alonso-Azcarate J; Lischick M
    Environ Toxicol Chem; 2002 Jul; 21(7):1390-7. PubMed ID: 12109738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Interaction of clay minerals with microorganisms: a review of experimental data].
    Naĭmark EB; Eroshchev-Shak VA; Chizhikova NP; Kompantseva EI
    Zh Obshch Biol; 2009; 70(2):155-67. PubMed ID: 19425352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum.
    McCollom TM; Simoneit BR; Shock EL
    Energy Fuels; 1999; 13(2):401-10. PubMed ID: 11762446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils.
    Ghislain T; Faure P; Biache C; Michels R
    Environ Sci Technol; 2010 Nov; 44(22):8547-52. PubMed ID: 20964431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.