These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 11542117)
1. Volatile organic acids generated from kerogen during laboratory heating. Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR Geochem J; 1986; 20():51-9. PubMed ID: 11542117 [TBL] [Abstract][Full Text] [Related]
2. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals. Tannenbaum E; Ruth E; Kaplan IR Geochim Cosmochim Acta; 1986; 50():805-12. PubMed ID: 11542029 [TBL] [Abstract][Full Text] [Related]
3. Role of minerals in thermal alteration of organic matter--II: a material balance. Tannenbaum E; Huizinga BJ; Kaplan IR Am Assoc Pet Geol Bull; 1986 Sep; 70(9):1156-65. PubMed ID: 11542070 [TBL] [Abstract][Full Text] [Related]
4. Role of minerals in the thermal alteration of organic matter--I: generation of gases and condensates under dry condition. Tannenbaum E; Kaplan IR Geochim Cosmochim Acta; 1985; 49():2589-604. PubMed ID: 11539655 [TBL] [Abstract][Full Text] [Related]
5. The role of minerals in the thermal alteration of organic matter--IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments. Huizinga BJ; Tannenbaum E; Kaplan IR Geochim Cosmochim Acta; 1987; 51():1083-97. PubMed ID: 11542080 [TBL] [Abstract][Full Text] [Related]
6. The role of minerals in the thermal alteration of organic matter--III. Generation of bitumen in laboratory experiments. Huizinga BJ; Tannenbaum E; Kaplan IR Org Geochem; 1987; 11(6):591-604. PubMed ID: 11542118 [TBL] [Abstract][Full Text] [Related]
7. Long-chain carboxylic acids in pyrolysates of Green River kerogen. Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR Org Geochem; 1986; 10():1059-65. PubMed ID: 11542045 [TBL] [Abstract][Full Text] [Related]
8. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. Beukes NJ; Klein C; Kaufman AJ; Hayes JM Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478 [TBL] [Abstract][Full Text] [Related]
9. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids. Kawamura K; Kaplan IR Geochim Cosmochim Acta; 1987; 51():3201-7. PubMed ID: 11542084 [TBL] [Abstract][Full Text] [Related]
10. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen. Tannenbaum E; Kaplan IR Nature; 1985 Oct; 317():708-9. PubMed ID: 11539657 [TBL] [Abstract][Full Text] [Related]
11. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California. Tannenbaum E; Ruth E; Huizinga BJ; Kaplan IR Org Geochem; 1986; 10(1-3 Pt 1):531-6. PubMed ID: 11540875 [TBL] [Abstract][Full Text] [Related]
12. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa. Toulkeridis T; Goldstein SL; Clauer N; Kroner A; Lowe DR Geology; 1994 Mar; 22(3):199-202. PubMed ID: 11540244 [TBL] [Abstract][Full Text] [Related]
13. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation. Ferris JP; Kamaluddin Orig Life Evol Biosph; 1989; 19():609-19. PubMed ID: 11538680 [TBL] [Abstract][Full Text] [Related]
14. Kerogen-bound and free hopanoic acids in the messel oil shale kerogen. Abbott GD; Bashir FZ; Sugden MA Chirality; 2001 Aug; 13(8):510-6. PubMed ID: 11466776 [TBL] [Abstract][Full Text] [Related]
15. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale. Alstadt KN; Katti DR; Katti KS Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101 [TBL] [Abstract][Full Text] [Related]
16. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Ahn MY; Filley TR; Jafvert CT; Nies L; Hua I; Bezares-Cruz J Environ Sci Technol; 2006 Jan; 40(1):215-20. PubMed ID: 16433354 [TBL] [Abstract][Full Text] [Related]
17. Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions. Hoch M; Alonso-Azcarate J; Lischick M Environ Toxicol Chem; 2002 Jul; 21(7):1390-7. PubMed ID: 12109738 [TBL] [Abstract][Full Text] [Related]
18. [Interaction of clay minerals with microorganisms: a review of experimental data]. Naĭmark EB; Eroshchev-Shak VA; Chizhikova NP; Kompantseva EI Zh Obshch Biol; 2009; 70(2):155-67. PubMed ID: 19425352 [TBL] [Abstract][Full Text] [Related]
19. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum. McCollom TM; Simoneit BR; Shock EL Energy Fuels; 1999; 13(2):401-10. PubMed ID: 11762446 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils. Ghislain T; Faure P; Biache C; Michels R Environ Sci Technol; 2010 Nov; 44(22):8547-52. PubMed ID: 20964431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]