These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11542250)

  • 1. Classification of ion mobility spectra by functional groups using neural networks.
    Bell S; Nazarov E; Wang YF; Eiceman GA
    Anal Chim Acta; 1999; 394():121-33. PubMed ID: 11542250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural network recognition of chemical class information in mobility spectra obtained at high temperatures.
    Bell S; Nazarov E; Wang YF; Rodriguez JE; Eiceman GA
    Anal Chem; 2000 Mar; 72(6):1192-8. PubMed ID: 10740859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. CL mass spectra of organic compounds produced by F- reactions.
    Tiernan TO; Chang C; Cheng CC
    Environ Health Perspect; 1980 Jun; 36():47-62. PubMed ID: 7428746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton-bound cluster ions in ion mobility spectrometry.
    Ewing RG; Eiceman GA; Stone JA
    Int J Mass Spectrom Ion Process; 1999 Oct; 193(1):57-68. PubMed ID: 11543494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An apparatus for the detection and quantitation of volatile human effluents.
    Ellin RI; Farrand RL; Oberst FW; Crouse CL; Billups NB; Koon WS; Musselman NP; Sidell FR
    J Chromatogr; 1974 Nov; 100(1):137-52. PubMed ID: 4154948
    [No Abstract]   [Full Text] [Related]  

  • 6. Field Induced Fragmentation (Fif) Spectra of Oxygen Containing Volatile Organic Compounds with Reactive Stage Tandem Ion Mobility Spectrometry and Functional Group Classification by Neural Network Analysis.
    Shokri H; Nazarov EG; Gardner BD; Niu HC; Lee G; Stone JA; Jurado-Campos N; Eiceman GA
    Anal Chem; 2020 Apr; 92(8):5862-5870. PubMed ID: 32212635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field dependence of mobilities for gas-phase-protonated monomers and proton-bound dimers of ketones by planar field asymmetric waveform ion mobility spectrometer (PFAIMS).
    Krylov E; Nazarov EG; Miller RA; Tadjikov B; Eiceman GA
    J Phys Chem A; 2002 Jun; 106(22):5437-44. PubMed ID: 12132535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of retention indexes. I. Structure-retention index relationship on apolar columns.
    Peng CT; Ding SF; Hua RL; Yang ZC
    J Chromatogr; 1988 Feb; 436(2):137-72. PubMed ID: 3356761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile constituents of Carphephorus corymbosus and Carphephorus paniculatus.
    Karlsson K; Wahlberg I; Enzell CR
    Acta Chem Scand; 1972; 26(10):3839-48. PubMed ID: 4676033
    [No Abstract]   [Full Text] [Related]  

  • 10. [Study of the composition of gas refuse in chlortetracycline production].
    Vedeneev KP; Gudovicheva NN; Khanina GF
    Antibiotiki; 1976 May; 21(5):403-7. PubMed ID: 1023811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques.
    Borsdorf H; Nazarov EG; Eiceman GA
    J Am Soc Mass Spectrom; 2002 Sep; 13(9):1078-87. PubMed ID: 12322955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer.
    Heptner A; Reinecke T; Langejuergen J; Zimmermann S
    J Chromatogr A; 2014 Aug; 1356():241-8. PubMed ID: 25015244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of proton-bound clusters of alkyl alcohols, aldehydes and ketones in Ion Mobility Spectrometry.
    Jurado-Campos N; Garrido-Delgado R; Martínez-Haya B; Eiceman GA; Arce L
    Talanta; 2018 Aug; 185():299-308. PubMed ID: 29759203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion mobility spectrometry: arriving on site and moving beyond a low profile.
    Baumbach JI; Eiceman GA
    Appl Spectrosc; 1999 Sep; 53(9):338A-355A. PubMed ID: 11542794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminant analysis of fused positive and negative ion mobility spectra using multivariate self-modeling mixture analysis and neural networks.
    Chen P; Harrington PB
    Appl Spectrosc; 2008 Feb; 62(2):133-41. PubMed ID: 18284787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of volatile compounds in cows' milk using headspace GC-MS.
    Toso B; Procida G; Stefanon B
    J Dairy Res; 2002 Nov; 69(4):569-77. PubMed ID: 12463694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation using sensitivity and target transform factor analyses of neural network models for classifying bacteria from mass spectra.
    de H; Voorhees KJ; Basile F; Hendricker AD
    J Am Soc Mass Spectrom; 2002 Jan; 13(1):10-21. PubMed ID: 11777195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of volatile compounds in different types of ghee using direct injection with gas chromatography-mass spectrometry.
    Wadodkar UR; Punjrath JS; Shah AC
    J Dairy Res; 2002 Feb; 69(1):163-71. PubMed ID: 12047107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of multilayer feed-forward neural networks to automated compound identification in low-resolution open-path FT-IR spectrometry.
    Yang H; Griffiths PR
    Anal Chem; 1999 Feb; 71(3):751-61. PubMed ID: 9989392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile compounds in shoulder gland secretions of male flying foxes, genus Pteropus (Pteropodidae, Chiroptera).
    Wood WF; Walsh A; Seyjagat J; Weldon PJ
    Z Naturforsch C J Biosci; 2005; 60(9-10):779-84. PubMed ID: 16320623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.