BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11542567)

  • 1. Super-optimal CO2 reduces wheat yield in growth chamber and greenhouse environments.
    Grotenhuis T; Reuveni J; Bugbee B
    Adv Space Res; 1997; 20(10):1901-4. PubMed ID: 11542567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat.
    Grotenhuis TP; Bugbee B
    Crop Sci; 1997; 37():1215-22. PubMed ID: 11543367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat.
    Reuveni J; Bugbee B
    Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 crop growth enhancement and toxicity in wheat and rice.
    Bugbee B; Spanarkel B; Johnson S; Monje O; Koerner G
    Adv Space Res; 1994 Nov; 14(11):257-67. PubMed ID: 11540191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of wheat and rice to low levels of atmospheric ethylene.
    Klassen SP; Bugbee B
    Crop Sci; 2002; 42(3):746-53. PubMed ID: 14552359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas exchange characteristics of wheat stands grown in a closed, controlled environment.
    Wheeler RM; Corey KA; Sager JC; Knott WM
    Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations.
    Smart DR; Ritchie K; Bloom AJ; Bugbee BB
    Plant Cell Environ; 1998; 21():753-63. PubMed ID: 11543217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the spaceflight effects on growth and development of Super Dwarf wheat grown on the Space Station Mir.
    Levinskikh MA; Sychev VN; Derendyaeva TA; Signalova OB; Salisbury FB; Campbell WF; Bingham GE; Bubenheim DL; Jahns G
    J Plant Physiol; 2000 Apr; 156(4):522-9. PubMed ID: 11543345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency.
    Monje O; Bugbee B
    Plant Cell Environ; 1998; 21():315-24. PubMed ID: 11543216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant growth during the Greenhouse II experiment on the Mir orbital station.
    Salisbury FB; Campbell WF; Carman JG; Bingham GE; Bubenheim DL; Yendler B; Sytchev V; Levinskikh MA; Ivanova I; Chernova L; Podolsky I
    Adv Space Res; 2003; 31(1):221-7. PubMed ID: 12580179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat.
    Campbell WF; Salisbury FB; Bugbee B; Klassen S; Naegle E; Strickland DT; Bingham GE; Levinskikh M; Iljina GM; Veselova TD; Sytchev VN; Podolsky I; McManus WR; Bubenheim DL; Stieber J; Jahns G
    J Plant Physiol; 2001 Aug; 158(8):1051-60. PubMed ID: 12033229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling.
    Tubiello FN; Mahato T; Morton T; Druitt JW; Volk T; Marino BD
    Ecol Eng; 1999; 13():273-86. PubMed ID: 11542248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.
    Nelson M; Dempster WF; Silverstone S; Alling A; Allen JP; van Thillo M
    Adv Space Res; 2005; 35(9):1539-43. PubMed ID: 16175676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of CO2 and O2 on development and fructification of wheat in closed systems.
    Andre M; Cotte F; Gerbaud A; Massimino D; Massimino J; Richaud C
    Adv Space Res; 1989; 9(8):17-28. PubMed ID: 11537385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting.
    Goins GD; Yorio NC; Sanwo MM; Brown CS
    J Exp Bot; 1997 Jul; 48(312):1407-13. PubMed ID: 11541074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study.
    Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM
    J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yield comparisons and unique characteristics of the dwarf wheat cultivar 'USU-Apogee'.
    Bugbee B; Koerner G
    Adv Space Res; 1997; 20(10):1891-4. PubMed ID: 11542565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.).
    Bishop DL; Bugbee BG
    J Plant Physiol; 1998 Nov; 153(5-6):558-65. PubMed ID: 11542674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germination and growth of wheat in simulated Martian atmospheres.
    Schwartzkopf SH; Mancinelli RL
    Acta Astronaut; 1991; 25(4):245-7. PubMed ID: 11537561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions.
    Jiang F; Shen Y; Ma C; Zhang X; Cao W; Rui Y
    PLoS One; 2017; 12(5):e0178088. PubMed ID: 28558015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.