These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11542601)

  • 1. Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1413-8. PubMed ID: 11542601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A capillary-driven root module for plant growth in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1407-12. PubMed ID: 11542600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity effects on water supply and substrate properties in porous matrix root support systems.
    Bingham GE; Jones SB; Or D; Podolski IG; Levinskikh MA; Sytchov VN; Ivanova T; Kostov P; Sapunova S; Dandolov I; Bubenheim DB; Jahns G
    Acta Astronaut; 2000 Dec; 47(11):839-48. PubMed ID: 11708347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.
    Chau JF; Or D; Sukop MC
    Water Resour Res; 2005 Aug; 41(8):W08410. PubMed ID: 16173154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space.
    Scovazzo P; Illangasekare TH; Hoehn A; Todd P
    Water Resour Res; 2001 May; 37(5):1231-43. PubMed ID: 12238522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium.
    Steinberg SL; Kluitenberg GJ; Jones SB; Daidzic NE; Reddi LN; Xiao M; Tuller M; Newman RM; Or D; Alexander JI
    J Am Soc Hortic Sci; 2005 Sep; 130(5):767-74. PubMed ID: 16173159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments.
    Jones SB; Or D
    Water Resour Res; 1999 Apr; 35(4):929-42. PubMed ID: 11543365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous media matric potential and water content measurements during parabolic flight.
    Norikane JH; Jones SB; Steinberg SL; Levine HG; Or D
    Habitation (Elmsford); 2005; 10(2):117-26. PubMed ID: 15751144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a root feeding system based on a fiber ion-exchange substrate for space plant growth chamber "Vitacycle".
    Berkovich YA; Krivobok NM; Krivobok SM; Matusevich VV; Soldatov VS
    Habitation (Elmsford); 2003; 9(1-2):59-65. PubMed ID: 14632002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Farming in space: environmental and biophysical concerns.
    Monje O; Stutte GW; Goins GD; Porterfield DM; Bingham GE
    Adv Space Res; 2003; 31(1):151-67. PubMed ID: 12577999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development of plant growth chambers for the experiments under microgravity conditions--development of measurement system of plant water uptake].
    Saito T; Kobayashi Y; Shiga T; Arakawa Y; Takai M; Shimanuki M; Tani A; Goto E; Kitaya Y; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):226-7. PubMed ID: 12533009
    [No Abstract]   [Full Text] [Related]  

  • 12. Selection of root-zone media for higher plant cultivation in space.
    Guo SS; Ai WD; Zhao CJ; Han LJ; Wang JX
    Space Med Med Eng (Beijing); 2004 Apr; 17(2):93-7. PubMed ID: 15909382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Development of plant growth chambers for the experiments under microgravity conditions (4)-results of two experiments for water circulation in parabolic flight].
    Tani A; Tahara N; Seino K; Kitaya Y; Saito T; Goto E; Takahashi H
    Biol Sci Space; 1999 Sep; 13(3):224-5. PubMed ID: 12533008
    [No Abstract]   [Full Text] [Related]  

  • 14. A root moisture sensor for plants in microgravity.
    Clark GJ; Neville GE; Dreschel TW
    Adv Space Res; 1994 Nov; 14(11):213-6. PubMed ID: 11540184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous Tube Plant Nutrient Delivery System development: a device for nutrient delivery in microgravity.
    Dreschel TW; Brown CS; Piastuch WC; Hinkle CR; Knott WM
    Adv Space Res; 1994 Nov; 14(11):47-51. PubMed ID: 11540217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity].
    Podol'skiĭ IG; Sychev VN; Levinskikh MA; Strugov OM; Bingham GE
    Aviakosm Ekolog Med; 1998; 32(2):36-43. PubMed ID: 9661774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Promising technique of mineral supply organization for plants in the condition of microgravity].
    Berkovich IuA; Krivobok AS; Krivobok NM; Smolianina SO
    Aviakosm Ekolog Med; 2014; 48(3):56-62. PubMed ID: 25163340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ASTROCULTURE(TM) flight experiment series, validating technologies for growing plants in space.
    Morrow RC; Bula RJ; Tibbitts TW; Dinauer WR
    Adv Space Res; 1994 Nov; 14(11):29-37. PubMed ID: 11540195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of water and nutrients using a porous tube: a method for growing plants in space.
    Dreschel TW; Sager JC
    HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.