These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11542601)

  • 21. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS).
    Thompson BG
    Acta Astronaut; 1989 Mar; 19(3):269-73. PubMed ID: 11541161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary evaluation of soil moisture probe for use with Arcillite.
    Yendler B
    Adv Space Res; 1998; 22(10):1419-23. PubMed ID: 11542602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.
    Ivanova TN; Bercovich YuA ; Mashinskiy AL; Meleshko GI
    Microgravity Q; 1992 Apr; 2(2):109-14. PubMed ID: 11541047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromosomes and plant cell division in space: environmental conditions and experimental details.
    Levine HG; Krikorian AD
    Adv Space Res; 1992; 12(1):73-82. PubMed ID: 11536992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Germination and elongation of flax in microgravity.
    Levine HG; Anderson K; Boody A; Cox D; Kuznetsov OA; Hasenstein KH
    Adv Space Res; 2003; 31(10):2261-8. PubMed ID: 14686441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity.
    Steinberg SL; Poritz D
    Soil Sci Soc Am J; 2005; 69(2):301-10. PubMed ID: 16052740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a plant growth unit for growing plants over a long-term life cycle under microgravity conditions.
    Kitaya Y; Tani A; Goto E; Saito T; Takahashi H
    Adv Space Res; 2000; 26(2):281-8. PubMed ID: 11543163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capillary movement of liquid in granular beds in microgravity.
    Yendler BS; Webbon B; Podolski I; Bula RJ
    Adv Space Res; 1996; 18(4-5):233-7. PubMed ID: 11538803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.
    Levine HG; Krikorian AD
    J Gravit Physiol; 1996 Apr; 3(1):17-27. PubMed ID: 11539304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in technologies required for a "Salad Machine".
    Kliss M; Heyenga AG; Hoehn A; Stodieck LS
    Adv Space Res; 2000; 26(2):263-9. PubMed ID: 11543161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growing super-dwarf wheat in Svet on Mir.
    Salisbury FB; Bingham GE; Campbell WF; Carman JG; Bubenheim DL; Yendler B; Jahns G
    Life Support Biosph Sci; 1995; 2(1):31-9. PubMed ID: 11538572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of soil moisture sensors for space flight applications.
    Norikane JH; Prenger JJ; Rouzan-Wheeldon DT; Levine HG
    Appl Eng Agric; 2005 Mar; 21(2):211-6. PubMed ID: 15934177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced nutrient root-feeding system for conveyor-type cylindrical plant growth facilities for microgravity.
    Berkovich YA; Krivobok NM; Krivobok AS; Smolyanina SO
    Life Sci Space Res (Amst); 2016 Feb; 8():14-21. PubMed ID: 26948009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparations for CELSS flight experiments with wheat.
    Salisbury F; Gillespie L; Bingham G
    Adv Space Res; 1994 Nov; 14(11):21-7. PubMed ID: 11540183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EPCOT, NASA and plant pathogens in space.
    White R
    Quest; 1996; 5(1):20-2. PubMed ID: 11540338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions.
    Heyenga AG; Forsman A; Stodieck LS; Hoehn A; Kliss M
    Adv Space Res; 2000; 26(2):299-302. PubMed ID: 11543165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of moisture content for wheat seedling germination in a cellulose acetate medium for a space flight experiment.
    Johnson CF; Dreschel TW; Brown CS; Wheeler RM
    Adv Space Res; 1996; 18(4-5):239-42. PubMed ID: 11538804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity.
    Nakashima J; Liao F; Sparks JA; Tang Y; Blancaflor EB
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():142-50. PubMed ID: 23952736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
    Salisbury FB
    Physiologist; 1984; 27(6 Suppl):S31-4. PubMed ID: 11539010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.