These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 11542626)

  • 21. Rotation in clinostat results in apoptosis of osteoblastic ROS 17/2.8 cells.
    Sarkar D; Nagaya T; Koga K; Kambe F; Nomura Y; Seo H
    J Gravit Physiol; 2000 Jul; 7(2):P71-2. PubMed ID: 12697568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulated microgravity suppresses osteoblast phenotype, Runx2 levels and AP-1 transactivation.
    Ontiveros C; McCabe LR
    J Cell Biochem; 2003 Feb; 88(3):427-37. PubMed ID: 12532319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation and proliferation of lymphocytes and other mammalian cells in microgravity.
    Cogoli A; Cogoli-Greuter M
    Adv Space Biol Med; 1997; 6():33-79. PubMed ID: 9048133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Influence of gravity change on EGF-induced signal transduction].
    Zhang Y; Wu XY; Chen SM
    Space Med Med Eng (Beijing); 2001 Oct; 14(5):373-7. PubMed ID: 11845826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear responses to protein kinase C signal transduction are sensitive to gravity changes.
    de Groot RP; Rijken PJ; den Hertog J; Boonstra J; Verkleij AJ; de Laat SW; Kruijer W
    Exp Cell Res; 1991 Nov; 197(1):87-90. PubMed ID: 1915667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells.
    Makihira S; Kawahara Y; Yuge L; Mine Y; Nikawa H
    Cell Biol Int; 2008 Sep; 32(9):1176-81. PubMed ID: 18550393
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms.
    Schnabl H; Hunte C; Schulz M; Wolf D; Ghiena-Rahlenbeck C; Bramer M; Graab M; Janssen M; Kalweit H
    Microgravity Sci Technol; 1996; 9(4):275-80. PubMed ID: 11540169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV).
    Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A
    J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results.
    Cogoli M
    ASGSB Bull; 1992 Oct; 5(2):59-67. PubMed ID: 11537642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of simulated microgravity on human osteoblast-like cells in culture.
    Kunisada T; Kawai A; Inoue H; Namba M
    Acta Med Okayama; 1997 Jun; 51(3):135-40. PubMed ID: 9227792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Function of the cytoskeleton in gravisensing during spaceflight.
    Hughes-Fulford M
    Adv Space Res; 2003; 32(8):1585-93. PubMed ID: 15002415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of ICAM-1 in cells of the monocyte/macrophage system in microgravity.
    Paulsen K; Tauber S; Dumrese C; Bradacs G; Simmet DM; Gölz N; Hauschild S; Raig C; Engeli S; Gutewort A; Hürlimann E; Biskup J; Unverdorben F; Rieder G; Hofmänner D; Mutschler L; Krammer S; Buttron I; Philpot C; Huge A; Lier H; Barz I; Engelmann F; Layer LE; Thiel CS; Ullrich O
    Biomed Res Int; 2015; 2015():538786. PubMed ID: 25654110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity.
    Hughes-Fulford M; Rodenacker K; Jütting U
    J Cell Biochem; 2006 Oct; 99(2):435-49. PubMed ID: 16619267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of simulated and real weightlessness on early regeneration stages of Brassica napus protoplasts.
    Skagen EB; Iversen TH
    In Vitro Cell Dev Biol Plant; 2000; 36(5):312-8. PubMed ID: 11758568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures.
    Kamal KY; Hemmersbach R; Medina FJ; Herranz R
    Life Sci Space Res (Amst); 2015 Apr; 5():47-52. PubMed ID: 26177849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of phosphate ion transfer to the surface of osteoblasts under normal gravity and simulated microgravity conditions.
    Mukundakrishnan K; Ayyaswamy PS; Risbud M; Hu HH; Shapiro IM
    Ann N Y Acad Sci; 2004 Nov; 1027():85-98. PubMed ID: 15644348
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effects of microgravity on the gene expression and cellular functions of osteoblasts].
    Wang B; Zhang S; Wu XY
    Space Med Med Eng (Beijing); 2003 Jun; 16(3):227-30. PubMed ID: 12934619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. IL-1α induces apoptosis and inhibits the osteoblast differentiation of MC3T3-E1 cells through the JNK and p38 MAPK pathways.
    Guo C; Yang XG; Wang F; Ma XY
    Int J Mol Med; 2016 Jul; 38(1):319-27. PubMed ID: 27220839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments.
    Kordyum EL
    Adv Space Res; 1994; 14(8):77-85. PubMed ID: 11537962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis.
    Zhang C; Li L; Jiang Y; Wang C; Geng B; Wang Y; Chen J; Liu F; Qiu P; Zhai G; Chen P; Quan R; Wang J
    FASEB J; 2018 Aug; 32(8):4444-4458. PubMed ID: 29533735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.