These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 11542765)

  • 41. Cellular automaton model of ventricular fibrillation.
    Mitchell RH; Bailey AH; Anderson J
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):253-9. PubMed ID: 1555855
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration.
    Clayton RH; Holden AV
    Prog Biophys Mol Biol; 2004; 85(2-3):473-99. PubMed ID: 15142758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple wavelets, rotors, and snakes in atrial fibrillation--a computer simulation study.
    Reumann M; Bohnert J; Osswald B; Hagl S; Doessel O
    J Electrocardiol; 2007 Oct; 40(4):328-34. PubMed ID: 17336996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crosstalk between theoretical and experimental studies for the understanding of cardiac electrical impulse propagation.
    Kléber AG
    J Electrocardiol; 2007; 40(6 Suppl):S136-41. PubMed ID: 17993310
    [No Abstract]   [Full Text] [Related]  

  • 47. Parameter estimation in cardiac ionic models.
    Dokos S; Lovell NH
    Prog Biophys Mol Biol; 2004; 85(2-3):407-31. PubMed ID: 15142755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unidirectional block in cardiac fibers: effects of discontinuities in coupling resistance and spatial changes in resting membrane potential in a computer simulation study.
    Sahakian AV; Myers GA; Maglaveras N
    IEEE Trans Biomed Eng; 1992 May; 39(5):510-22. PubMed ID: 1526641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Improvement of ECG analysis in monitoring the electrical cardiac activity].
    Bodin ON; Loginov DS; Mitrokhina NIu
    Med Tekh; 2008; (3):23-6. PubMed ID: 18688940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three distinct directions of intramural activation reveal nonuniform side-to-side electrical coupling of ventricular myocytes.
    Caldwell BJ; Trew ML; Sands GB; Hooks DA; LeGrice IJ; Smaill BH
    Circ Arrhythm Electrophysiol; 2009 Aug; 2(4):433-40. PubMed ID: 19808500
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A stochastic network model of the interaction between cardiac rhythm and artificial pacemaker.
    Greenhut SE; Jenkins JM; MacDonald RS
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):845-58. PubMed ID: 8288275
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models.
    Colli Franzone P; Pavarino LF; Taccardi B
    Math Biosci; 2005 Sep; 197(1):35-66. PubMed ID: 16009380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3-dimensional computer simulation of depolarization and repolarization processes in the myocardium.
    Aoki M; Okamoto Y; Musha T; Harumi K
    Jpn Heart J; 1986 Nov; 27 Suppl 1():225-34. PubMed ID: 3820588
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tissue-specific model of reentry in the right atrial appendage.
    Zhao J; Trew ML; Legrice IJ; Smaill BH; Pullan AJ
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):675-84. PubMed ID: 19207787
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects.
    Cherubini C; Filippi S; Nardinocchi P; Teresi L
    Prog Biophys Mol Biol; 2008; 97(2-3):562-73. PubMed ID: 18353430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex temporal patterns of spontaneous initiation and termination of reentry in a loop of cardiac tissue.
    Sedaghat H; Wood MA; Cain JW; Cheng CK; Baumgarten CM; Chan DM
    J Theor Biol; 2008 Sep; 254(1):14-26. PubMed ID: 18571676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined phase singularity and wavefront analysis for optical maps of ventricular fibrillation.
    Rogers JM
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):56-65. PubMed ID: 14723494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three dimensional electromechanical model of porcine heart with penetrating wound injury.
    Usyk T; Kerckhoffs R
    Stud Health Technol Inform; 2005; 111():568-73. PubMed ID: 15718799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.