BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 11542952)

  • 1. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and preliminary testing of an instrumented object for force analysis during grasping.
    Romeo RA; Cordella F; Zollo L; Formica D; Saccomandi P; Schena E; Carpino G; Davalli A; Sacchetti R; Guglielmelli E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6720-3. PubMed ID: 26737835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Grasp Object Classification and Feature Extraction with Simple Robot Hands and Tactile Sensors.
    Spiers AJ; Liarokapis MV; Calli B; Dollar AM
    IEEE Trans Haptics; 2016; 9(2):207-20. PubMed ID: 26829804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-inspired grasp control in a robotic hand with massive sensorial input.
    Ascari L; Bertocchi U; Corradi P; Laschi C; Dario P
    Biol Cybern; 2009 Feb; 100(2):109-28. PubMed ID: 19066937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and validation of low-cost assistive glove for hand assessment and therapy during activity of daily living-focused robotic stroke therapy.
    Nathan DE; Johnson MJ; McGuire JR
    J Rehabil Res Dev; 2009; 46(5):587-602. PubMed ID: 19882493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of operational comfort in manual tasks using human force manipulability measure.
    Tanaka Y; Nishikawa K; Yamada N; Tsuji T
    IEEE Trans Haptics; 2015; 8(1):8-19. PubMed ID: 25415990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A data glove with tactile feedback for FMRI of virtual reality experiments.
    Ku J; Mraz R; Baker N; Zakzanis KK; Lee JH; Kim IY; Kim SI; Graham SJ
    Cyberpsychol Behav; 2003 Oct; 6(5):497-508. PubMed ID: 14583125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Two-Finger Haptic Robotic Hand with Novel Stiffness Detection and Impedance Control.
    Mohammadi V; Shahbad R; Hosseini M; Gholampour MH; Shiry Ghidary S; Najafi F; Behboodi A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidigit force control during unconstrained grasping in response to object perturbations.
    Naceri A; Moscatelli A; Haschke R; Ritter H; Santello M; Ernst MO
    J Neurophysiol; 2017 May; 117(5):2025-2036. PubMed ID: 28228582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to study precision grip control in viscoelastic force fields using a robotic gripper.
    Lambercy O; Metzger JC; Santello M; Gassert R
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):39-48. PubMed ID: 25014953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Robotic Glove with Sensing and Force Feedback for Rehabilitation in Virtual Reality.
    Li F; Chen J; Ye G; Dong S; Gao Z; Zhou Y
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-Robot Interaction Using Learning from Demonstrations and a Wearable Glove with Multiple Sensors.
    Singh R; Mozaffari S; Akhshik M; Ahamed MJ; Rondeau-Gagné S; Alirezaee S
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote tactile sensing glove-based system.
    Culjat MO; Son J; Fan RE; Wottawa C; Bisley JW; Grundfest WS; Dutson EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1550-4. PubMed ID: 21096379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An instrumented object for evaluation of lateral hand grasp during functional tasks.
    Inmann A; Haugland M
    J Med Eng Technol; 2001; 25(5):207-11. PubMed ID: 11695661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.