These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 11543060)

  • 21. Microbial mats, stromatolites and the rise of oxygen in the Precambrian atmosphere.
    Des Marais DJ
    Glob Planet Change; 1991; 97():93-6. PubMed ID: 11538094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-dependant biostabilisation of sediments by stromatolite assemblages.
    Paterson DM; Aspden RJ; Visscher PT; Consalvey M; Andres MS; Decho AW; Stolz J; Reid RP
    PLoS One; 2008 Sep; 3(9):e3176. PubMed ID: 18781202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
    Berelson WM; Corsetti FA; Pepe-Ranney C; Hammond DE; Beaumont W; Spear JR
    Geobiology; 2011 Sep; 9(5):411-24. PubMed ID: 21777367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: an investigation into sedimentary and microbial control of stromatolite morphology.
    Planavsky N; Grey K
    Geobiology; 2008 Jan; 6(1):33-45. PubMed ID: 18380884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Palaeontology: respect for stromatolites.
    Awramik SM
    Nature; 2006 Jun; 441(7094):700-1. PubMed ID: 16760962
    [No Abstract]   [Full Text] [Related]  

  • 26. Model of carbon fixation in microbial mats from 3,500 Myr ago to the present.
    Rothschild LJ; Mancinelli RL
    Nature; 1990 Jun; 345(6277):710-2. PubMed ID: 11536465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The case for relic life on Mars.
    Gibson EK; McKay DS; Thomas-Keprta K; Romanek CS
    Sci Am; 1997 Dec; 277(6):58-65. PubMed ID: 11536819
    [No Abstract]   [Full Text] [Related]  

  • 28. Deep water cuspate stromatolites of the Cryogenian Trezona Formation.
    O'Connell B; Wallace MW; Hood AVS; Rebbechi L; Brooks HL
    Geobiology; 2022 Mar; 20(2):194-215. PubMed ID: 34914161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes.
    Buick R
    Science; 1992 Jan; 255(5040):74-7. PubMed ID: 11536492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring for a record of ancient Martian life.
    Farmer JD; Des Marais DJ
    J Geophys Res; 1999 Nov; 104(E11):26977-95. PubMed ID: 11543200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paleoenvironmental distribution of microfossils and stromatolites in the Upper Proterozoic Backlundtoppen Formation, Spitsbergen.
    Knoll AH; Swett K; Burkhardt E
    J Paleontol; 1989; 63(2):129-45. PubMed ID: 11538341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paleobiology of the Mesoproterozoic-Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia.
    Sergeev VN; Knoll AH; Petrov PYu
    Precambrian Res; 1997 Dec; 85(3-4):201-39. PubMed ID: 11541434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of growth directions of columnar stromatolites from Walker Lake, western Nevada.
    Petryshyn VA; Corsetti FA
    Geobiology; 2011 Sep; 9(5):425-35. PubMed ID: 21884363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas.
    Baumgartner LK; Spear JR; Buckley DH; Pace NR; Reid RP; Dupraz C; Visscher PT
    Environ Microbiol; 2009 Oct; 11(10):2710-9. PubMed ID: 19601956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition.
    Knoll AH; Sergeev VN
    Neues Jahrb Geol Palaontol Abh; 1995 Feb; 195(1-3):289-302. PubMed ID: 11539427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites.
    Bartley JK; Kah LC; Frank TD; Lyons TW
    Geobiology; 2015 Jan; 13(1):15-32. PubMed ID: 25354129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbially influenced formation of Neoarchean ooids.
    Flannery DT; Allwood AC; Hodyss R; Summons RE; Tuite M; Walter MR; Williford KH
    Geobiology; 2019 Mar; 17(2):151-160. PubMed ID: 30450841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).
    Fairchild IJ; Knoll AH; Swett K
    Precambrian Res; 1991; 53():165-97. PubMed ID: 11538645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial lithification in marine stromatolites and hypersaline mats.
    Dupraz C; Visscher PT
    Trends Microbiol; 2005 Sep; 13(9):429-38. PubMed ID: 16087339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical basis for the geometry of conical stromatolites.
    Petroff AP; Sim MS; Maslov A; Krupenin M; Rothman DH; Bosak T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(22):9956-61. PubMed ID: 20479268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.