These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11543095)

  • 1. How important are changes in body weight for mass perception?
    Ross HE
    Acta Astronaut; 1981; 8(9-10):1051-8. PubMed ID: 11543095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of sensorimotor adaptation to altered G-levels: evidence from mass discrimination.
    Ross HE; Schwartz E; Emmerson P
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A148-52. PubMed ID: 3675482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass discrimination under Gz acceleration.
    Darwood JJ; Repperger DW; Goodyear CD
    Aviat Space Environ Med; 1991 Apr; 62(4):319-24. PubMed ID: 2031633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass-discrimination in weightlessness and readaptation to earth's gravity.
    Ross HE; Brodie EE; Benson AJ
    Exp Brain Res; 1986; 64(2):358-66. PubMed ID: 3803477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body mass change during altered gravity: spaceflight, centrifugation, and return to 1 G.
    Wade CE; Harper JS; Daunton NG; Corcoran ML; Morey-Holton E
    J Gravit Physiol; 1997 Oct; 4(3):43-8. PubMed ID: 11541868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass discrimination during prolonged weightlessness.
    Ross H; Brodie E; Benson A
    Science; 1984 Jul; 225(4658):219-21. PubMed ID: 6729479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass is all that matters in the size-weight illusion.
    Plaisier MA; Smeets JB
    PLoS One; 2012; 7(8):e42518. PubMed ID: 22912704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensorimotor adaptation of point-to-point arm movements after spaceflight: the role of internal representation of gravity force in trajectory planning.
    Gaveau J; Paizis C; Berret B; Pozzo T; Papaxanthis C
    J Neurophysiol; 2011 Aug; 106(2):620-9. PubMed ID: 21562193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of varying gravity levels in parabolic flight on the size-mass illusion.
    Clément G
    PLoS One; 2014; 9(6):e99188. PubMed ID: 24901519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astronaut's perception of heaviness and limb position.
    Ross HE
    Hum Perf Extrem Environ; 1998 Sep; 3(1):34-6. PubMed ID: 12190076
    [No Abstract]   [Full Text] [Related]  

  • 11. Proceedings of the 17th Annual International Gravitational Physiology Meeting, Warsaw, Poland, April 14-19, 1996.
    J Gravit Physiol; 1996 Sep; 3(2):1-105. PubMed ID: 11540259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gravitational contribution to perceived body weight.
    Ferrè ER; Frett T; Haggard P; Longo MR
    Sci Rep; 2019 Aug; 9(1):11448. PubMed ID: 31391471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heaviness perception. II. Contributions of object weight, haptic size, and density to the accurate perception of heaviness or lightness.
    Kawai S
    Exp Brain Res; 2002 Nov; 147(1):23-8. PubMed ID: 12373365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of ground-based and space flight energy expenditure and water turnover in middle-aged healthy male US astronauts.
    Lane HW; Gretebeck RJ; Schoeller DA; Davis-Street J; Socki RA; Gibson EK
    Am J Clin Nutr; 1997 Jan; 65(1):4-12. PubMed ID: 8988906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gravitational biology and the mammalian circadian timing system.
    Fuller CA; Murakami DM; Sulzman FM
    Adv Space Res; 1989; 9(11):283-92. PubMed ID: 11537343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characteristics of arm movements executed in unusual force environments.
    Bock O
    Adv Space Res; 1992; 12(1):237-41. PubMed ID: 11536962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-Body Movements in Long-Term Weightlessness: Hierarchies of the Controlled Variables Are Gravity-Dependent.
    Casellato C; Pedrocchi A; Ferrigno G
    J Mot Behav; 2017; 49(5):568-579. PubMed ID: 28027021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.