These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 11543166)
1. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir. Monje O; Bingham GE; Carman JG; Campbell WF; Salisbury FB; Eames BK; Sytchev V; Levinskikh MA; Podolsky I Adv Space Res; 2000; 26(2):303-6. PubMed ID: 11543166 [TBL] [Abstract][Full Text] [Related]
2. Characterizing photosynthesis and transpiration of plant communities in controlled environments. Monje O; Bugbee B Acta Hortic; 1996 Dec; 440():123-8. PubMed ID: 11541566 [TBL] [Abstract][Full Text] [Related]
3. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Monje O; Stutte G; Chapman D Planta; 2005 Oct; 222(2):336-45. PubMed ID: 15968511 [TBL] [Abstract][Full Text] [Related]
4. Gas exchange characteristics of wheat stands grown in a closed, controlled environment. Wheeler RM; Corey KA; Sager JC; Knott WM Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198 [TBL] [Abstract][Full Text] [Related]
6. Measuring Canopy Gas Exchange Using CAnopy Photosynthesis and Transpiration Systems (CAPTS). Song Q; Zhu XG Methods Mol Biol; 2024; 2790():213-226. PubMed ID: 38649573 [TBL] [Abstract][Full Text] [Related]
7. Microgravity effects on water supply and substrate properties in porous matrix root support systems. Bingham GE; Jones SB; Or D; Podolski IG; Levinskikh MA; Sytchov VN; Ivanova T; Kostov P; Sapunova S; Dandolov I; Bubenheim DB; Jahns G Acta Astronaut; 2000 Dec; 47(11):839-48. PubMed ID: 11708347 [TBL] [Abstract][Full Text] [Related]
8. Six-month space greenhouse experiments--a step to creation of future biological life support systems. Ivanova TN; Kostov PT; Sapunova SM; Dandolov IW; Salisbury FB; Bingham GE; Sytchov VN; Levinskikh MA; Podolski IG; Bubenheim DB; Jahns G Acta Astronaut; 1998; 42(1-8):11-23. PubMed ID: 11541596 [TBL] [Abstract][Full Text] [Related]
9. Preparations for CELSS flight experiments with wheat. Salisbury F; Gillespie L; Bingham G Adv Space Res; 1994 Nov; 14(11):21-7. PubMed ID: 11540183 [TBL] [Abstract][Full Text] [Related]
10. Adaptive environmental control for optimal results during plant microgravity experiments. Kostov P; Ivanova T; Dandolov I; Sapunova S; Ilieva I Acta Astronaut; 2002; 51(1-9):213-20. PubMed ID: 12583386 [TBL] [Abstract][Full Text] [Related]
11. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. Monje O; Bugbee B Plant Cell Environ; 1998; 21():315-24. PubMed ID: 11543216 [TBL] [Abstract][Full Text] [Related]
12. CO2 crop growth enhancement and toxicity in wheat and rice. Bugbee B; Spanarkel B; Johnson S; Monje O; Koerner G Adv Space Res; 1994 Nov; 14(11):257-67. PubMed ID: 11540191 [TBL] [Abstract][Full Text] [Related]
13. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Stutte GW; Monje O; Goins GD; Tripathy BC Planta; 2005 Dec; 223(1):46-56. PubMed ID: 16160842 [TBL] [Abstract][Full Text] [Related]
14. Plant growth during the Greenhouse II experiment on the Mir orbital station. Salisbury FB; Campbell WF; Carman JG; Bingham GE; Bubenheim DL; Yendler B; Sytchev V; Levinskikh MA; Ivanova I; Chernova L; Podolsky I Adv Space Res; 2003; 31(1):221-7. PubMed ID: 12580179 [TBL] [Abstract][Full Text] [Related]
15. Growing super-dwarf wheat in Svet on Mir. Salisbury FB; Bingham GE; Campbell WF; Carman JG; Bubenheim DL; Yendler B; Jahns G Life Support Biosph Sci; 1995; 2(1):31-9. PubMed ID: 11538572 [TBL] [Abstract][Full Text] [Related]
16. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity]. Podol'skiĭ IG; Sychev VN; Levinskikh MA; Strugov OM; Bingham GE Aviakosm Ekolog Med; 1998; 32(2):36-43. PubMed ID: 9661774 [TBL] [Abstract][Full Text] [Related]
17. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study. Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007 [TBL] [Abstract][Full Text] [Related]
18. Modeling gas exchange in a closed plant growth chamber. Cornett JD; Hendrix JE; Wheeler RM; Ross CW; Sadeh WZ Adv Space Res; 1994 Nov; 14(11):337-41. PubMed ID: 11540203 [TBL] [Abstract][Full Text] [Related]
19. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.). Bishop DL; Bugbee BG J Plant Physiol; 1998 Nov; 153(5-6):558-65. PubMed ID: 11542674 [TBL] [Abstract][Full Text] [Related]
20. Measuring Canopy Gas Exchange Using CAnopy Photosynthesis and Transpiration Systems (CAPTS). Song Q; Zhu XG Methods Mol Biol; 2018; 1770():69-81. PubMed ID: 29978396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]