These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11543175)

  • 1. Growth and morphogenesis of plant seedlings in space: STS-95 Space Shuttle experiments.
    Hoson T
    J Plant Res; 1999 Dec; 112(1108):475. PubMed ID: 11543175
    [No Abstract]   [Full Text] [Related]  

  • 2. Seedling growth and development on space shuttle.
    Cowles J; LeMay R; Jahns G
    Adv Space Res; 1994 Nov; 14(11):3-12. PubMed ID: 11540197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphogenesis of rice and Arabidopsis seedlings in space.
    Hoson T; Soga K; Mori R; Saiki M; Wakabayashi K; Kamisaka S; Kamigaichi S; Aizawa S; Yoshizaki I; Mukai C; Shimazu T; Fukui K; Yamashita M
    J Plant Res; 1999 Dec; 112(1108):477-86. PubMed ID: 11543176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.
    Link BM; Cosgrove DJ
    J Plant Res; 1999 Dec; 112(1108):507-16. PubMed ID: 11543180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and growth of several strains of Arabidopsis seedlings in microgravity.
    Kiss JZ; Brinckmann E; Brillouet C
    Int J Plant Sci; 2000 Jan; 161(1):55-62. PubMed ID: 10648194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinorotation affects soybean seedling morphology.
    Hilaire E; Guikema JA; Brown CS
    J Gravit Physiol; 1995; 2(1):P149-50. PubMed ID: 11538905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphogenesis in cucumber seedlings is negatively controlled by gravity.
    Takahashi H; Kamada M; Yamazaki Y; Fujii N; Higashitani A; Aizawa S; Yoshizaki I; Kamigaichi S; Mukai C; Shimazu T; Fukui K
    Planta; 2000 Feb; 210(3):515-8. PubMed ID: 10750911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Gravitational Plant Physiology Facility--description of equipment developed for biological research in Spacelab.
    Heathcote DG; Chapman DK; Brown AH; Lewis RF
    Microgravity Sci Technol; 1994 Sep; 7(3):270-5. PubMed ID: 11541487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weightlessness experiments on Biosatellite II.
    Edwards BF
    Life Sci Space Res; 1969; 7():84-92. PubMed ID: 11949691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings.
    Takahashi H; Fujii N; Kamada M; Higashitani A; Yamazaki Y; Kobayashi A; Takano M; Yamasaki S; Sakata T; Mizuno H; Kaneko Y; Murata T; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 2000 Jun; 14(2):64-74. PubMed ID: 11543423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus.
    Link BM; Wagner ER; Cosgrove DJ
    Physiol Plant; 2001 Oct; 113(2):292-300. PubMed ID: 11710397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microgravity effects on plant growth and lignification.
    Cowles JR; Lemay R; Jahns G
    Astrophys Lett Commun; 1988; 27():223-8. PubMed ID: 11539286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions.
    Hoson T; Saiki M; Kamisaka S; Yamashita M
    Adv Space Res; 2001; 27(5):933-40. PubMed ID: 11596636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth regulation mechanisms in higher plants under microgravity conditions - changes in cell wall metabolism.
    Hoson T; Kamisaka S; Wakabayashi K; Soga K; Tabuchi A; Tokumoto H; Okamura K; Nakamura Y; Mori R; Tanimoto E; Takeba G; Nishitani K; Izumi R; Ishioka N; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K
    Biol Sci Space; 2000 Jun; 14(2):75-96. PubMed ID: 11543424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein crystal growth aboard the U.S. space shuttle flights STS-31 and STS-32.
    DeLucas LJ; Smith CD; Carter DC; Twigg P; He XM; Snyder RS; Weber PC; Schloss JV; Einspahr HM; Clancy LL; McPherson A; Koszelak S; Vandonselaar MM; Prasad L; Quail JW; Delbaere LT; Bugg CE
    Adv Space Res; 1992; 12(1):393-400. PubMed ID: 11536985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.
    Stout SC; Porterfield DM; Briarty LG; Kuang A; Musgrave ME
    Int J Plant Sci; 2001 Mar; 162(2):249-55. PubMed ID: 11725801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and development of plants flown on the STS-3 Space Shuttle mission.
    Cowles JR; Scheld HW; Peterson C; LeMay R
    Acta Astronaut; 1984 May; 11(5):275-7. PubMed ID: 11541789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [NASDA education program on the Space Shuttle STS-107 mission].
    Tanigaki F; Yoshizaki I; Fujimoto N; Takaoki M; Yoshitomi S
    Biol Sci Space; 2002 Nov; 16(3):197-8. PubMed ID: 12695620
    [No Abstract]   [Full Text] [Related]  

  • 20. Variation in stem morphology and movement of amyloplasts in white spruce grown in the weightless environment of the International Space Station.
    Rioux D; Lagacé M; Cohen LY; Beaulieu J
    Life Sci Space Res (Amst); 2015 Jan; 4():67-78. PubMed ID: 26177622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.