These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11543176)

  • 41. Automorphosis of higher plants on a 3-D clinostat.
    Hoson T; Kamisaka S; Yamashita M; Masuda Y
    Adv Space Res; 1998; 21(8-9):1229-38. PubMed ID: 11541377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparatory studies for the use of plant protoplasts in space research.
    Rasmussen O; Baggerud C; Iversen TH
    Physiol Plant; 1989 Jul; 76(3 Pt 1):431-7. PubMed ID: 11541111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings.
    Levine LH; Levine HG; Stryjewski EC; Prima V; Piastuch WC
    J Gravit Physiol; 2001 Dec; 8(2):21-7. PubMed ID: 12365447
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space.
    Soga K; Yamazaki C; Kamada M; Tanigawa N; Kasahara H; Yano S; Kojo KH; Kutsuna N; Kato T; Hashimoto T; Kotake T; Wakabayashi K; Hoson T
    Physiol Plant; 2018 Jan; 162(1):135-144. PubMed ID: 28862767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An effect of weightlessness following exposure to vibration.
    Gray SW; Edwards BF
    Life Sci Space Res; 1970; 8():25-32. PubMed ID: 11826887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana.
    Deng C; Wang T; Wu J; Xu W; Li H; Liu M; Wu L; Lu J; Bian P
    Mutat Res; 2017 Feb; 796():20-28. PubMed ID: 28254518
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Mechanism of automorphic curvature in rice coleoptiles under simulated microgravity conditions].
    Saiki M; Wakabayashi K; Kamisaka S; Yamashita M; Hoson T
    Biol Sci Space; 2000 Oct; 14(3):188-9. PubMed ID: 12561855
    [No Abstract]   [Full Text] [Related]  

  • 48. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space.
    Wakabayashi K; Soga K; Hoson T; Kotake T; Yamazaki T; Higashibata A; Ishioka N; Shimazu T; Fukui K; Osada I; Kasahara H; Kamada M
    PLoS One; 2015; 10(9):e0137992. PubMed ID: 26378793
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
    Moore R
    Ann Bot; 1990; 65():213-6. PubMed ID: 11537660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro plant cell growth in microgravity and on clinostat.
    Laurinavicius R; Kenstaviciene P; Rupainiene O; Necitailo G
    Adv Space Res; 1994; 14(8):87-96. PubMed ID: 11537963
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus.
    Link BM; Wagner ER; Cosgrove DJ
    Physiol Plant; 2001 Oct; 113(2):292-300. PubMed ID: 11710397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth of pea epicotyl in low magnetic field: implication for space research.
    Negishi Y; Hashimoto A; Tsushima M; Dobrota C; Yamashita M; Nakamura T
    Adv Space Res; 1999; 23(12):2029-32. PubMed ID: 11710386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of horizontal clinorotation on the root system development and on lipid breakdown in rapeseed (Brassica napus) seedlings.
    Aarrouf J; Darbelley N; Demandre C; Razafindramboa N; Perbal G
    Plant Cell Physiol; 1999 Apr; 40(4):396-405. PubMed ID: 11536917
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.
    Stout SC; Porterfield DM; Briarty LG; Kuang A; Musgrave ME
    Int J Plant Sci; 2001 Mar; 162(2):249-55. PubMed ID: 11725801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development.
    Kwon T; Sparks JA; Nakashima J; Allen SN; Tang Y; Blancaflor EB
    Am J Bot; 2015 Jan; 102(1):21-35. PubMed ID: 25587145
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Possible mechanisms of plant cell wall changes at microgravity.
    Nedukha EM
    Adv Space Res; 1996; 17(6-7):37-45. PubMed ID: 11538635
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Role of microtubules in automorphic curvatures of rice coleoptiles under simulated microgravity conditions].
    Fujita H; Saiki M; Soga K; Wakabayashi K; Hoson T
    Biol Sci Space; 2001 Oct; 15(3):242-3. PubMed ID: 11997623
    [No Abstract]   [Full Text] [Related]  

  • 59. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides.
    Nakamura Y; Wakabayashi K; Hoson T
    Physiol Plant; 2003 Aug; 118(4):597-604. PubMed ID: 14631937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Changes in the rheological properties of the cell wall of plant seedlings under simulated microgravity conditions.
    Masuda Y; Kamisaka S; Yamamoto R; Hoson T; Nishinari K
    Biorheology; 1994; 31(2):171-7. PubMed ID: 8729479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.