These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 11543180)
1. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment. Link BM; Cosgrove DJ J Plant Res; 1999 Dec; 112(1108):507-16. PubMed ID: 11543180 [TBL] [Abstract][Full Text] [Related]
2. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Link BM; Wagner ER; Cosgrove DJ Physiol Plant; 2001 Oct; 113(2):292-300. PubMed ID: 11710397 [TBL] [Abstract][Full Text] [Related]
3. Morphogenesis in cucumber seedlings is negatively controlled by gravity. Takahashi H; Kamada M; Yamazaki Y; Fujii N; Higashitani A; Aizawa S; Yoshizaki I; Kamigaichi S; Mukai C; Shimazu T; Fukui K Planta; 2000 Feb; 210(3):515-8. PubMed ID: 10750911 [TBL] [Abstract][Full Text] [Related]
4. A spaceflight experiment for the study of gravimorphogenesis and hydrotropism in cucumber seedlings. Takahashi H; Mizuno H; Kamada M; Fujii N; Higashitani A; Kamigaichi S; Aizawa S; Mukai C; Shimazu T; Fukui K; Yamashita M J Plant Res; 1999 Dec; 112(1108):497-505. PubMed ID: 11543179 [TBL] [Abstract][Full Text] [Related]
5. Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings. Takahashi H; Fujii N; Kamada M; Higashitani A; Yamazaki Y; Kobayashi A; Takano M; Yamasaki S; Sakata T; Mizuno H; Kaneko Y; Murata T; Kamigaichi S; Aizawa S; Yoshizaki I; Shimazu T; Fukui K Biol Sci Space; 2000 Jun; 14(2):64-74. PubMed ID: 11543423 [TBL] [Abstract][Full Text] [Related]
6. [Microtubule reorganization in response to gravistimulation during cucumber peg development]. Murata T; Kobayashi M; Fujii N; Higashitani A; Aizawa S; Kamigaichi S; Shimazu T; Fukui K; Takahashi H Biol Sci Space; 1999 Sep; 13(3):282-3. PubMed ID: 12533020 [No Abstract] [Full Text] [Related]
7. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport. Miyamoto K; Hoshino T; Yamashita M; Ueda J Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285 [TBL] [Abstract][Full Text] [Related]
8. Control of gravimorphogenesis by auxin: accumulation pattern of CS-IAA1 mRNA in cucumber seedlings grown in space and on the ground. Kamada M; Fujii N; Aizawa S; Kamigaichi S; Mukai C; Shimazu T; Takahashi H Planta; 2000 Sep; 211(4):493-501. PubMed ID: 11030548 [TBL] [Abstract][Full Text] [Related]
9. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells. Moore R Ann Bot; 1990; 66():541-9. PubMed ID: 11537663 [TBL] [Abstract][Full Text] [Related]
10. Gravimorphogenesis: gravity-regulated formation of the peg in cucumber seedlings. Takahashi H Planta; 1997 Sep; 203(Suppl 1):S164-9. PubMed ID: 11540325 [TBL] [Abstract][Full Text] [Related]
11. Graviperception of lentil seedling roots grown in space (Spacelab D1 Mission). Perbal G; Driss-Ecole D; Rutin J; Salle G Physiol Plant; 1987; 70():119-26. PubMed ID: 11539054 [TBL] [Abstract][Full Text] [Related]
12. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells? Moore R Ann Bot; 1990; 65():213-6. PubMed ID: 11537660 [TBL] [Abstract][Full Text] [Related]
13. Automorphogenesis and gravitropism of plant seedlings grown under microgravity conditions. Hoson T; Saiki M; Kamisaka S; Yamashita M Adv Space Res; 2001; 27(5):933-40. PubMed ID: 11596636 [TBL] [Abstract][Full Text] [Related]
14. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment. Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135 [TBL] [Abstract][Full Text] [Related]
15. Morphogenesis of rice and Arabidopsis seedlings in space. Hoson T; Soga K; Mori R; Saiki M; Wakabayashi K; Kamisaka S; Kamigaichi S; Aizawa S; Yoshizaki I; Mukai C; Shimazu T; Fukui K; Yamashita M J Plant Res; 1999 Dec; 112(1108):477-86. PubMed ID: 11543176 [TBL] [Abstract][Full Text] [Related]
16. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells. Hilaire E; Paulsen AQ; Brown CS; Guikema JA Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706 [TBL] [Abstract][Full Text] [Related]
17. A role of cytoskeletal structure of cortical cells in the gravity-regulated formation of a peg in cucumber seedlings. Kobayashi M; Murata T; Fujii N; Yamashita M; Higashitani A; Takahashi H Adv Space Res; 1999; 24(6):771-3. PubMed ID: 11542621 [TBL] [Abstract][Full Text] [Related]
18. The state of gravity sensors and peculiarities of plant growth during different gravitational loads. Merkys AJ; Laurinavichius RS; Rupainene OJ; Savichene EK; Jaroshius AV; Shvegzhdene DV; Bendoraityte DP Adv Space Res; 1983; 3(9):211-9. PubMed ID: 11542450 [TBL] [Abstract][Full Text] [Related]
19. Gravity-regulated formation of the peg in developing cucumber seedlings. Takahashi H; Scott TK Planta; 1994; 193():580-4. PubMed ID: 11537999 [TBL] [Abstract][Full Text] [Related]
20. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Kiss JZ; Katembe WJ; Edelmann RE Physiol Plant; 1998 Apr; 102(4):493-502. PubMed ID: 11541086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]