These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 11543216)
1. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency. Monje O; Bugbee B Plant Cell Environ; 1998; 21():315-24. PubMed ID: 11543216 [TBL] [Abstract][Full Text] [Related]
2. CO2 crop growth enhancement and toxicity in wheat and rice. Bugbee B; Spanarkel B; Johnson S; Monje O; Koerner G Adv Space Res; 1994 Nov; 14(11):257-67. PubMed ID: 11540191 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic capacity and dry mass partitioning in dwarf and semi-dwarf wheat (Triticum aestivum L.). Bishop DL; Bugbee BG J Plant Physiol; 1998 Nov; 153(5-6):558-65. PubMed ID: 11542674 [TBL] [Abstract][Full Text] [Related]
4. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat. Grotenhuis TP; Bugbee B Crop Sci; 1997; 37():1215-22. PubMed ID: 11543367 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations. Smart DR; Ritchie K; Bloom AJ; Bugbee BB Plant Cell Environ; 1998; 21():753-63. PubMed ID: 11543217 [TBL] [Abstract][Full Text] [Related]
6. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat. Reuveni J; Bugbee B Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793 [TBL] [Abstract][Full Text] [Related]
7. Gas exchange characteristics of wheat stands grown in a closed, controlled environment. Wheeler RM; Corey KA; Sager JC; Knott WM Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198 [TBL] [Abstract][Full Text] [Related]
8. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments. Bugbee BG; Salisbury FB Plant Physiol; 1988; 88(3):869-78. PubMed ID: 11537442 [TBL] [Abstract][Full Text] [Related]
9. Characterizing photosynthesis and transpiration of plant communities in controlled environments. Monje O; Bugbee B Acta Hortic; 1996 Dec; 440():123-8. PubMed ID: 11541566 [TBL] [Abstract][Full Text] [Related]
10. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study. Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007 [TBL] [Abstract][Full Text] [Related]
11. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir. Monje O; Bingham GE; Carman JG; Campbell WF; Salisbury FB; Eames BK; Sytchev V; Levinskikh MA; Podolsky I Adv Space Res; 2000; 26(2):303-6. PubMed ID: 11543166 [TBL] [Abstract][Full Text] [Related]
12. [Responses of agricultural crops of free-air CO2 enrichment]. Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686 [TBL] [Abstract][Full Text] [Related]
13. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO Bahrami H; De Kok LJ; Armstrong R; Fitzgerald GJ; Bourgault M; Henty S; Tausz M; Tausz-Posch S J Plant Physiol; 2017 Sep; 216():44-51. PubMed ID: 28575746 [TBL] [Abstract][Full Text] [Related]
14. Super-optimal CO2 reduces wheat yield in growth chamber and greenhouse environments. Grotenhuis T; Reuveni J; Bugbee B Adv Space Res; 1997; 20(10):1901-4. PubMed ID: 11542567 [TBL] [Abstract][Full Text] [Related]
15. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment. Stanciel K; Mortley DG; Hileman DR; Loretan PA; Bonsi CK; Hill WA HortScience; 2000 Feb; 35(1):49-52. PubMed ID: 11725790 [TBL] [Abstract][Full Text] [Related]
16. Current and potential productivity of wheat for a Controlled Environment Life Support System. Bugbee BG; Salisbury FB Adv Space Res; 1989; 9(8):5-15. PubMed ID: 11537390 [TBL] [Abstract][Full Text] [Related]
17. Substituting Far-Red for Traditionally Defined Photosynthetic Photons Results in Equal Canopy Quantum Yield for CO Zhen S; Bugbee B Front Plant Sci; 2020; 11():581156. PubMed ID: 33014004 [TBL] [Abstract][Full Text] [Related]
18. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Cai C; Yin X; He S; Jiang W; Si C; Struik PC; Luo W; Li G; Xie Y; Xiong Y; Pan G Glob Chang Biol; 2016 Feb; 22(2):856-74. PubMed ID: 26279285 [TBL] [Abstract][Full Text] [Related]
19. Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity. Smart DR; Ritchie K; Stark JM; Bugbee B Appl Environ Microbiol; 1997 Nov; 63(11):4621-4. PubMed ID: 11536820 [TBL] [Abstract][Full Text] [Related]
20. The components of crop productivity: measuring and modeling plant metabolism. Bugbee B ASGSB Bull; 1995 Oct; 8(2):93-104. PubMed ID: 11538555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]