These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11543342)

  • 1. Structure and NIR feature of QCC: a laboratory analog of carbon dust.
    Goto M; Maihara T; Terada H; Wada S; Kaito C; Kimura S
    Adv Space Res; 1999; 24(4):527-30. PubMed ID: 11543342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and UV absorption of QCCs: carbonaceous dust analogues.
    Wada S; Kaito C; Kimura S; Tokunaga AT
    Adv Space Res; 1999; 24(4):523-6. PubMed ID: 11543341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quenched Carbonaceous Composite: a laboratory analog for carbonaceous material in the interstellar medium.
    Tokunaga AT; Wada S
    Adv Space Res; 1997; 19(7):1009-17. PubMed ID: 11541327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of synthetic carbon nanoparticles as model of cosmic dust.
    Reynaud C; Guillois O; Herlin-Boime N; Rouzaud JN; Galvez A; Clinard C; Balanzat E; Ramillon JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):797-814. PubMed ID: 11345255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct spectroscopic evidence for ionized polycyclic aromatic hydrocarbons in the interstellar medium.
    Sloan GC; Hayward TL; Allamandola LJ; Bregman JD; DeVito B; Hudgins DM
    Astrophys J; 1999 Mar; 513(1 Pt 2):L65-8. PubMed ID: 11543061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon and silicate grains in the laboratory as analogues of cosmic dust.
    Mennella V; Brucato JR; Colangeli L
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):787-95. PubMed ID: 11345254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared spectroscopy of the proto-planetary nebula CRL 618 and the origin of the hydrocarbon dust component in the interstellar medium.
    Chiar JE; Pendleton YJ; Geballe TR; Tielens AG
    Astrophys J; 1998 Nov; 507(1 Pt 1):281-6. PubMed ID: 11542820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of carbon compounds in Apollo 12 and 14 lunar samples.
    Holland PT; Simoneit BR; Wszolek PC; Burlingame AL
    Space Life Sci; 1972 Oct; 3(4):551-61. PubMed ID: 4650306
    [No Abstract]   [Full Text] [Related]  

  • 9. Carbonaceous grain processing in space and in the laboratory.
    Mennella V; Colangeli L; Brucato JR; Epifani E; Palomba E; Palumbo P; Rotundi A
    Adv Space Res; 1999; 24(4):439-42. PubMed ID: 11543328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hydrocarbon ring C3H2 is ubiquitous in the Galaxy.
    Matthews HE; Irvine WM
    Astrophys J; 1985 Nov; 298(2):L61-5. PubMed ID: 11542021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the organic refractory component from interstellar dust to comets.
    Greenberg JM; Li A
    Adv Space Res; 1999; 24(4):497-504. PubMed ID: 11543337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey.
    Salama F; Galazutdinov GA; Krelowski J; Allamandola LJ; Musaev FA
    Astrophys J; 1999 Nov; 526 Pt 1():265-73. PubMed ID: 11543306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemistry between the stars.
    Irvine WM
    Planet Rep; 1987; 7(6):6-9. PubMed ID: 11539061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules.
    Maluendes SA; McLean AD
    Chem Phys Lett; 1992 Dec; 200(5):511-7. PubMed ID: 11538408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deuterium hyperfine structure in interstellar C3HD.
    Bell MB; Watson JK; Feldman PA; Matthews HE; Madden SC; Irvine WM
    Chem Phys Lett; 1987 May; 136(6):588-92. PubMed ID: 11538338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H2O ice in the envelopes of OH/IR stars.
    Meyer AW; Smith RG; Charnley SB; Pendleton YJ
    Astron J; 1998 Jun; 115(6):2509-14. PubMed ID: 11542932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of surface morphology in interstellar H2 formation.
    Hornekaer L; Baurichter A; Petrunin VV; Field D; Luntz AC
    Science; 2003 Dec; 302(5652):1943-6. PubMed ID: 14671297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of carbonates in dust shells around evolved stars.
    Kemper F; Jäger C; Waters LB; Henning T; Molster FJ; Barlow MJ; Lim T; de Koter A
    Nature; 2002 Jan; 415(6869):295-7. PubMed ID: 11797000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetically enhanced coagulation of very small iron grains.
    Nuth JA 3rd ; Berg O; Faris J; Wasilewski P
    Icarus; 1994 Jan; 107(1):155-63. PubMed ID: 11539125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compounds of the organogenic elements in Apollo 11 and 12 lunar samples: a review.
    Gibson EK; Moore CB
    Space Life Sci; 1972 Oct; 3(4):404-14. PubMed ID: 4568115
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.