These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 11543365)

  • 1. Microgravity effects on water flow and distribution in unsaturated porous media: analyses of flight experiments.
    Jones SB; Or D
    Water Resour Res; 1999 Apr; 35(4):929-42. PubMed ID: 11543365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space.
    Scovazzo P; Illangasekare TH; Hoehn A; Todd P
    Water Resour Res; 2001 May; 37(5):1231-43. PubMed ID: 12238522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of hydraulic characteristics of porous media used to grow plants in microgravity.
    Steinberg SL; Poritz D
    Soil Sci Soc Am J; 2005; 69(2):301-10. PubMed ID: 16052740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of gaseous diffusion in partially saturated porous media under variable gravity with lattice Boltzmann methods.
    Chau JF; Or D; Sukop MC
    Water Resour Res; 2005 Aug; 41(8):W08410. PubMed ID: 16173154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary movement of liquid in granular beds in microgravity.
    Yendler BS; Webbon B; Podolski I; Bula RJ
    Adv Space Res; 1996; 18(4-5):233-7. PubMed ID: 11538803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous media matric potential and water content measurements during parabolic flight.
    Norikane JH; Jones SB; Steinberg SL; Levine HG; Or D
    Habitation (Elmsford); 2005; 10(2):117-26. PubMed ID: 15751144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical and hydraulic properties of baked ceramic aggregates used for plant growth medium.
    Steinberg SL; Kluitenberg GJ; Jones SB; Daidzic NE; Reddi LN; Xiao M; Tuller M; Newman RM; Or D; Alexander JI
    J Am Soc Hortic Sci; 2005 Sep; 130(5):767-74. PubMed ID: 16173159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A capillary-driven root module for plant growth in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1407-12. PubMed ID: 11542600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particulated growth media for optimal liquid and gaseous fluxes to plant roots in microgravity.
    Jones SB; Or D
    Adv Space Res; 1998; 22(10):1413-8. PubMed ID: 11542601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ASTROCULTURE(TM) flight experiment series, validating technologies for growing plants in space.
    Morrow RC; Bula RJ; Tibbitts TW; Dinauer WR
    Adv Space Res; 1994 Nov; 14(11):29-37. PubMed ID: 11540195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peculiarities of moisture transfer in capillary-porous soil substitutes during space flight.
    Podolsky I; Mashinsky A
    Adv Space Res; 1994 Nov; 14(11):39-46. PubMed ID: 11540211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydroponic system for microgravity plant experiments.
    Wright BD; Bausch WC; Knott WM
    Trans ASAE; 1988; 31(2):440-6. PubMed ID: 11539001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microgravity effects on water supply and substrate properties in porous matrix root support systems.
    Bingham GE; Jones SB; Or D; Podolski IG; Levinskikh MA; Sytchov VN; Ivanova T; Kostov P; Sapunova S; Dandolov I; Bubenheim DB; Jahns G
    Acta Astronaut; 2000 Dec; 47(11):839-48. PubMed ID: 11708347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Tube Plant Nutrient Delivery System development: a device for nutrient delivery in microgravity.
    Dreschel TW; Brown CS; Piastuch WC; Hinkle CR; Knott WM
    Adv Space Res; 1994 Nov; 14(11):47-51. PubMed ID: 11540217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant responses to real and simulated microgravity.
    Sathasivam M; Hosamani R; K Swamy B; Kumaran G S
    Life Sci Space Res (Amst); 2021 Feb; 28():74-86. PubMed ID: 33612182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.
    Levine HG; Krikorian AD
    J Gravit Physiol; 1996 Apr; 3(1):17-27. PubMed ID: 11539304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of simulated microgravity on bacteria from the Mir space station.
    Baker PW; Leff L
    Microgravity Sci Technol; 2004; 15(1):35-41. PubMed ID: 15773020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Farming in space: environmental and biophysical concerns.
    Monje O; Stutte GW; Goins GD; Porterfield DM; Bingham GE
    Adv Space Res; 2003; 31(1):151-67. PubMed ID: 12577999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.