These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11543524)

  • 41. Multi-trichomous cyanobacterial microfossils from the Mesoproterozoic Gaoyuzhuang Formation, China: paleoecological and taxonomic implications.
    Seong-Joo L; Golubic S
    Lethaia; 1998 Sep; 31(3):169-84. PubMed ID: 11542928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A unifying model for Neoproterozoic-Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression.
    Schiffbauer JD; Xiao S; Cai Y; Wallace AF; Hua H; Hunter J; Xu H; Peng Y; Kaufman AJ
    Nat Commun; 2014 Dec; 5():5754. PubMed ID: 25517864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfossils in stromatolitic cherts from the upper proterozoic Min'yar formation, southern Ural Mountains, USSR.
    Nyberg AV; Schopf JW
    J Paleontol; 1984 May; 58(3):738-72. PubMed ID: 11541991
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facies selectivity of benthic invertebrates in a Permian/Triassic boundary microbialite succession: Implications for the "microbialite refuge" hypothesis.
    Foster WJ; Lehrmann DJ; Yu M; Martindale RC
    Geobiology; 2019 Sep; 17(5):523-535. PubMed ID: 31120196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).
    Cosmidis J; Benzerara K; Gheerbrant E; Estève I; Bouya B; Amaghzaz M
    Geobiology; 2013 Mar; 11(2):139-53. PubMed ID: 23301909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Taphonomic and evolutionary changes across the Mesoproterozoic-Neoproterozoic transition.
    Knoll AH; Sergeev VN
    Neues Jahrb Geol Palaontol Abh; 1995 Feb; 195(1-3):289-302. PubMed ID: 11539427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older.
    Bengtson S; Belivanova V; Rasmussen B; Whitehouse M
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7729-34. PubMed ID: 19416859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental precipitation of apatite pseudofossils resembling fossil embryos.
    Crosby CH; Bailey JV
    Geobiology; 2018 Jan; 16(1):80-87. PubMed ID: 29047205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Global controls on phosphatization of fossils during the toarcian oceanic anoxic event.
    Sinha S; Muscente AD; Schiffbauer JD; Williams M; Schweigert G; Martindale RC
    Sci Rep; 2021 Dec; 11(1):24087. PubMed ID: 34916533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Taphonomy of Microbial Biosignatures in Spring Deposits: A Comparison of Modern, Quaternary, and Jurassic Examples.
    Potter-McIntyre SL; Williams J; Phillips-Lander C; O'Connell L
    Astrobiology; 2017 Mar; 17(3):216-230. PubMed ID: 28323483
    [TBL] [Abstract][Full Text] [Related]  

  • 51. U-Pb ages from the neoproterozoic Doushantuo Formation, China.
    Condon D; Zhu M; Bowring S; Wang W; Yang A; Jin Y
    Science; 2005 Apr; 308(5718):95-8. PubMed ID: 15731406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exceptional preservation of fossils in an Upper Proterozoic shale.
    Butterfield NJ; Knoll AH; Swett K
    Nature; 1988 Aug; 334(6181):424-7. PubMed ID: 11542151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Qingjiang biota-A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China.
    Fu D; Tong G; Dai T; Liu W; Yang Y; Zhang Y; Cui L; Li L; Yun H; Wu Y; Sun A; Liu C; Pei W; Gaines RR; Zhang X
    Science; 2019 Mar; 363(6433):1338-1342. PubMed ID: 30898931
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China.
    Chen JY; Schopf JW; Bottjer DJ; Zhang CY; Kudryavtsev AB; Tripathi AB; Wang XQ; Yang YH; Gao X; Yang Y
    Proc Natl Acad Sci U S A; 2007 Apr; 104(15):6289-92. PubMed ID: 17404242
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modular construction of early Ediacaran complex life forms.
    Narbonne GM
    Science; 2004 Aug; 305(5687):1141-4. PubMed ID: 15256615
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup, India.
    Papineau D; De Gregorio B; Fearn S; Kilcoyne D; McMahon G; Purohit R; Fogel M
    Geobiology; 2016 Jan; 14(1):3-32. PubMed ID: 26490161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calcified microbes in Neoproterozoic carbonates: implications for our understanding of the Proterozoic/Cambrian transition.
    Knoll AH; Fairchild IJ; Swett K
    Palaios; 1993; 8():512-25. PubMed ID: 11539428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Paleontology. Fossil embryos hint at early start for complex development.
    Unger K
    Science; 2006 Jun; 312(5780):1587. PubMed ID: 16778032
    [No Abstract]   [Full Text] [Related]  

  • 59. Coastal lithofacies and biofacies associated with syndepositional dolomitization and silicification (Draken Formation, Upper Riphean, Svalbard).
    Fairchild IJ; Knoll AH; Swett K
    Precambrian Res; 1991; 53():165-97. PubMed ID: 11538645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Earth's earliest non-marine eukaryotes.
    Strother PK; Battison L; Brasier MD; Wellman CH
    Nature; 2011 May; 473(7348):505-9. PubMed ID: 21490597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.