BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11543566)

  • 1. Calcium localization and tipburn development in lettuce leaves during early enlargement.
    Barta DJ; Tibbitts TW
    J Am Soc Hortic Sci; 2000 May; 125(3):294-8. PubMed ID: 11543566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium localization in lettuce leaves with and without tipburn: comparison of controlled-environment and field-grown plants.
    Barta DJ; Tibbitts TW
    J Am Soc Hortic Sci; 1991 Sep; 116(5):870-5. PubMed ID: 11538112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of artificial enclosure of young lettuce leaves on tipburn incidence and leaf calcium concentration.
    Barta DJ; Tibbitts TW
    J Am Soc Hortic Sci; 1986; 111(3):413-6. PubMed ID: 11539770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of electron microprobe x-ray analysis for determination of low calcium concentrations across leaves deficient in calcium.
    Barta DJ; Tibbitts TW
    Commun Soil Sci Plant Anal; 1991; 22(7-8):729-53. PubMed ID: 11537559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tipburn in salt-affected lettuce (Lactuca sativa L.) plants results from local oxidative stress.
    Carassay LR; Bustos DA; Golberg AD; Taleisnik E
    J Plant Physiol; 2012 Feb; 169(3):285-93. PubMed ID: 22137608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce.
    Frantz JM; Ritchie G; Cometti NN; Robinson J; Bugbee B
    J Am Soc Hortic Sci; 2004 May; 129(3):331-8. PubMed ID: 15776542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of relative humidity and root temperature on calcium concentration and tipburn development in lettuce.
    Collier GF; Tibbitts TW
    J Am Soc Hortic Sci; 1984 Mar; 109(2):128-31. PubMed ID: 11540812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuolar Ca
    Beacham AM; Wilkins KA; Davies JM; Monaghan JM
    Plant Physiol Biochem; 2023 Aug; 201():107792. PubMed ID: 37285692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and gas exchange by lettuce stands in a closed, controlled environment.
    Wheeler RM; Mackowiak CL; Sager JC; Yorio NC; Knott WM; Berry WL
    J Am Soc Hortic Sci; 1994 May; 119(3):610-5. PubMed ID: 11538197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium concentration effect on growth, gas exchange and mineral accumulation in potatoes.
    Cao W; Tibbitts TW
    J Plant Nutr; 1991; 14(6):525-37. PubMed ID: 11538369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of genotype and transpiration rate on the uptake and accumulation of perchlorate (ClO4-) in lettuce.
    Seyfferth AL; Parker DR
    Environ Sci Technol; 2007 May; 41(9):3361-7. PubMed ID: 17539550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility.
    Xiong T; Zhang T; Dumat C; Sobanska S; Dappe V; Shahid M; Xian Y; Li X; Li S
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20064-20078. PubMed ID: 30178413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do nitrogen sources and molybdenum affect the nutritional quality and nitrate concentrations of hydroponic baby leaf lettuce?
    Rocha DC; da Silva BFI; Moreira Dos Santos JM; Tavares DS; Pauletti V; Gomes MP
    J Food Sci; 2020 May; 85(5):1605-1612. PubMed ID: 32249421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root uptake and shoot accumulation of cadmium by lettuce at various Cd:Zn ratios in nutrient solution.
    Zare AA; Khoshgoftarmanesh AH; Malakouti MJ; Bahrami HA; Chaney RL
    Ecotoxicol Environ Saf; 2018 Feb; 148():441-446. PubMed ID: 29102904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of three relationships linking cadmium accumulation to cadmium tolerance and zinc and citrate accumulation in lettuce.
    Zorrig W; Rouached A; Shahzad Z; Abdelly C; Davidian JC; Berthomieu P
    J Plant Physiol; 2010 Oct; 167(15):1239-47. PubMed ID: 20576318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort.
    Xiong T; Zhang T; Xian Y; Kang Z; Zhang S; Dumat C; Shahid M; Li S
    Environ Geochem Health; 2021 Jan; 43(1):423-439. PubMed ID: 32990874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms for tolerance of very high tissue phosphorus concentrations in Ptilotus polystachyus.
    Aziz T; Lambers H; Nicol D; Ryan MH
    Plant Cell Environ; 2015 Apr; 38(4):790-9. PubMed ID: 25258291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light.
    Ahmed HA; Yu-Xin T; Qi-Chang Y
    J Therm Biol; 2020 Feb; 88():102496. PubMed ID: 32125984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation.
    Levizou E; Statiris G; Papadimitriou T; Laspidou CS; Kormas KA
    Ecotoxicol Environ Saf; 2017 Sep; 143():193-200. PubMed ID: 28550806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution genetic dissection of the major QTL for tipburn resistance in lettuce, Lactuca sativa.
    Macias-González M; Truco MJ; Han R; Jenni S; Michelmore RW
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33772545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.