These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11544038)
1. Stand-off tissue-based biosensors for the detection of chemical warfare agents using photosynthetic fluorescence induction. Sanders CA; Rodriguez M; Greenbaum E Biosens Bioelectron; 2001 Sep; 16(7-8):439-46. PubMed ID: 11544038 [TBL] [Abstract][Full Text] [Related]
2. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study. Kelly JT; Qualley A; Hughes GT; Rubenstein MH; Malloy TA; Piatkowski T J Chromatogr A; 2021 Jan; 1636():461784. PubMed ID: 33360649 [TBL] [Abstract][Full Text] [Related]
3. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
4. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator. Nagashima H; Kondo T; Nagoya T; Ikeda T; Kurimata N; Unoke S; Seto Y J Chromatogr A; 2015 Aug; 1406():279-90. PubMed ID: 26118803 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric Gas Detection Tubes: Limits of Detection and Evaluation Using Active Chemical Warfare Agents. Hauck BC; Ince BS; Riley PC ACS Sens; 2023 Aug; 8(8):2945-2951. PubMed ID: 37581255 [TBL] [Abstract][Full Text] [Related]
6. A Rapid and Sensitive Strip-Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPY-Modified Silica Materials. Climent E; Biyikal M; Gawlitza K; Dropa T; Urban M; Costero AM; Martínez-Máñez R; Rurack K Chemistry; 2016 Aug; 22(32):11138-42. PubMed ID: 27124609 [TBL] [Abstract][Full Text] [Related]
7. Using metal complex ion-molecule reactions in a miniature rectilinear ion trap mass spectrometer to detect chemical warfare agents. Graichen AM; Vachet RW J Am Soc Mass Spectrom; 2013 Jun; 24(6):917-25. PubMed ID: 23532782 [TBL] [Abstract][Full Text] [Related]
8. Highly specific and sensitive chromo-fluorogenic detection of sarin, tabun, and mustard gas stimulants: a multianalyte recognition approach. Tohora N; Ahamed S; Mahato M; Sultana T; Chourasia J; Maiti A; Das SK Photochem Photobiol Sci; 2024 Apr; 23(4):763-780. PubMed ID: 38519812 [TBL] [Abstract][Full Text] [Related]
9. Detection of Chemical Warfare Agents with a Miniaturized High-Performance Drift Tube Ion Mobility Spectrometer Using High-Energetic Photons for Ionization. Ahrens A; Allers M; Bock H; Hitzemann M; Ficks A; Zimmermann S Anal Chem; 2022 Nov; 94(44):15440-15447. PubMed ID: 36301910 [TBL] [Abstract][Full Text] [Related]
11. Application of gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry to the analysis of chemical warfare samples, found to contain residues of the nerve agent sarin, sulphur mustard and their degradation products. Black RM; Clarke RJ; Read RW; Reid MT J Chromatogr A; 1994 Feb; 662(2):301-21. PubMed ID: 8143028 [TBL] [Abstract][Full Text] [Related]
12. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Arduini F; Amine A; Moscone D; Ricci F; Palleschi G Anal Bioanal Chem; 2007 Jul; 388(5-6):1049-57. PubMed ID: 17508205 [TBL] [Abstract][Full Text] [Related]
13. μ-PADs for detection of chemical warfare agents. Pardasani D; Tak V; Purohit AK; Dubey DK Analyst; 2012 Dec; 137(23):5648-53. PubMed ID: 23086107 [TBL] [Abstract][Full Text] [Related]
14. Quenching action of monofunctional sulfur mustard on chlorophyll fluorescence: towards an ultrasensitive biosensor. Kaur S; Singh M; Flora SJ Appl Biochem Biotechnol; 2013 Nov; 171(6):1405-15. PubMed ID: 23955347 [TBL] [Abstract][Full Text] [Related]
15. A lab-on-a-chip for detection of nerve agent sarin in blood. Tan HY; Loke WK; Tan YT; Nguyen NT Lab Chip; 2008 Jun; 8(6):885-91. PubMed ID: 18497907 [TBL] [Abstract][Full Text] [Related]
16. Sampling and analyses of surfaces contaminated with chemical warfare agents by using a newly developed triple layered composite wipe. Imran M; Kumar N; Thakare VB; Gupta AK; Acharya J; Garg P Anal Bioanal Chem; 2020 Feb; 412(5):1097-1110. PubMed ID: 31907592 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometric analysis of chemical warfare agents and their degradation products in soil and synthetic samples. D'Agostino PA; Hancock JR; Chenier CL Eur J Mass Spectrom (Chichester); 2003; 9(6):609-18. PubMed ID: 15100471 [TBL] [Abstract][Full Text] [Related]
18. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207 [TBL] [Abstract][Full Text] [Related]
19. Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Rodriguez M; Sanders CA; Greenbaum E Biosens Bioelectron; 2002 Oct; 17(10):843-9. PubMed ID: 12243902 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces. L'Hermite D; Vors E; Vercouter T; Moutiers G Environ Sci Pollut Res Int; 2016 May; 23(9):8219-26. PubMed ID: 26906000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]