These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11544141)

  • 1. Cadmium-induced abnormality in strains of Euglena gracilis: morphological alteration and its prevention by zinc and cyanocobalamin.
    Watanabe M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Sep; 130(1):29-39. PubMed ID: 11544141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium-induced synthesis of HSP70 and a role of glutathione in Euglena gracilis.
    Watanabe M; Suzuki T
    Redox Rep; 2004; 9(6):349-53. PubMed ID: 15720831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis.
    Watanabe M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Apr; 131(4):491-500. PubMed ID: 11976064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative stress-induced cellular damage caused by UV and methyl viologen in Euglena gracilis and its suppression with rutin.
    Palmer H; Ohta M; Watanabe M; Suzuki T
    J Photochem Photobiol B; 2002 Jun; 67(2):116-29. PubMed ID: 12031812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Blocking of cell division and malformations induced by vitamin B 12 deficiency in synchronic cells of Euglena gracilis Z].
    Bertaux O; Valencia R
    C R Acad Hebd Seances Acad Sci D; 1973 Jan; 676(5):753-6. PubMed ID: 4200167
    [No Abstract]   [Full Text] [Related]  

  • 6. Cadmium-dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non-photosynthetic strains of Euglena gracilis.
    Watanabe M; Henmi K; Ogawa K; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Feb; 134(2):227-34. PubMed ID: 12600682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of the inositol phospholipid signaling pathway in the increase in cytosolic calcium induced by tributyltin chloride intoxication of chlorophyllous protozoa Euglena gracilis Z and its achlorophyllous mutant SM-ZK.
    Ohta M; Suzuki T
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Nov; 146(4):525-30. PubMed ID: 17644488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing benzene-induced toxicity on wild type Euglena gracilis Z and its mutant strain SMZ.
    Peng C; Arthur DM; Sichani HT; Xia Q; Ng JC
    Chemosphere; 2013 Nov; 93(10):2381-9. PubMed ID: 24034892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA distribution in the cell cycle of Euglena gracilis. Cytofluorometry of zinc deficient cells.
    Falchuk KH; Drishan A; Vallee BL
    Biochemistry; 1975 Jul; 14(15):3439-44. PubMed ID: 807244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium resistance of achlorophyllous Euglena gracilis cells: constitutive overexpression of two heat-shock proteins.
    Barque JP; Chacun H; Marouby S; Bonaly J
    Biochem Biophys Res Commun; 1994 Aug; 203(1):540-4. PubMed ID: 8074701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth responses of achlorophyllous Euglena gracilis to selected concentrations of cadmium and pentachlorophenol.
    Barque JP; Abahamid A; Bourezgui Y; Chacun H; Bonaly J
    Arch Environ Contam Toxicol; 1995 Jan; 28(1):8-12. PubMed ID: 7717763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone formation, gene expression, and zinc deficiency in Euglena gracilis.
    Mazus B; Falchuk KH; Vallee BL
    Biochemistry; 1984 Jan; 23(1):42-7. PubMed ID: 6419773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin B 12 and the macromolecular composition of Euglena. II. Recovery from unbalanced growth induced by Vitamin B 12 deficiency.
    Johnston PL; Carell EF
    J Cell Biol; 1973 Jun; 57(3):668-74. PubMed ID: 4633443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mercury pretreatment selects an enhanced cadmium-accumulating phenotype in Euglena gracilis.
    Avilés C; Loza-Tavera H; Terry N; Moreno-Sánchez R
    Arch Microbiol; 2003 Jul; 180(1):1-10. PubMed ID: 12739103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species.
    Kennedy V; Kaszecki E; Donaldson ME; Saville BJ
    Sci Rep; 2024 May; 14(1):11734. PubMed ID: 38777815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-glycoprotein-like protein contributes to cadmium resistance in Euglena gracilis.
    Einicker-Lamas M; Morales MM; Miranda K; Garcia-Abreu J; Oliveira AJ; Silva FL; Oliveira MM
    J Comp Physiol B; 2003 Sep; 173(7):559-64. PubMed ID: 12879347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cadmium on Euglena gracilis membrane lipids.
    Einicker-Lamas M; Soares MJ; Soares MS; Oliveira MM
    Braz J Med Biol Res; 1996 Aug; 29(8):941-8. PubMed ID: 9181074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of polychlorinated biphenyls (PCBs) to Euglena gracilis: cell population growth, carbon fixation, chlorophyll level, oxygen consumption, and protein and nucleic acid synthesis.
    Ewald WG; French JE; Champ MA
    Bull Environ Contam Toxicol; 1976 Jul; 16(1):71-80. PubMed ID: 822906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat.
    Hammouda F; Messaoudi I; El Hani J; Baati T; Saïd K; Kerkeni A
    Biol Trace Elem Res; 2008; 126(1-3):194-203. PubMed ID: 18685812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a highly negative and labile binding protein induced in Euglena gracilis by cadmium.
    Gingrich DJ; Weber DN; Shaw CF; Garvey JS; Petering DH
    Environ Health Perspect; 1986 Mar; 65():77-85. PubMed ID: 3011392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.