BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11545258)

  • 1. Context-dependent regulation of fate decisions in multipotent progenitor cells of the peripheral nervous system.
    Sommer L
    Cell Tissue Res; 2001 Aug; 305(2):211-6. PubMed ID: 11545258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-intrinsic and cell-extrinsic cues regulating lineage decisions in multipotent neural crest-derived progenitor cells.
    Paratore C; Hagedorn L; Floris J; Hari L; Kléber M; Suter U; Sommer L
    Int J Dev Biol; 2002 Jan; 46(1):193-200. PubMed ID: 11902683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors.
    Hagedorn L; Suter U; Sommer L
    Development; 1999 Sep; 126(17):3781-94. PubMed ID: 10433908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gene regulatory network orchestrates neural crest formation.
    Sauka-Spengler T; Bronner-Fraser M
    Nat Rev Mol Cell Biol; 2008 Jul; 9(7):557-68. PubMed ID: 18523435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomic neurogenesis and apoptosis are alternative fates of progenitor cell communities induced by TGFbeta.
    Hagedorn L; Floris J; Suter U; Sommer L
    Dev Biol; 2000 Dec; 228(1):57-72. PubMed ID: 11087626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multipotent caudal neural progenitors derived from human pluripotent stem cells that give rise to lineages of the central and peripheral nervous system.
    Denham M; Hasegawa K; Menheniott T; Rollo B; Zhang D; Hough S; Alshawaf A; Febbraro F; Ighaniyan S; Leung J; Elliott DA; Newgreen DF; Pera MF; Dottori M
    Stem Cells; 2015 Jun; 33(6):1759-70. PubMed ID: 25753817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells.
    Light W; Vernon AE; Lasorella A; Iavarone A; LaBonne C
    Development; 2005 Apr; 132(8):1831-41. PubMed ID: 15772131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling pathways bridging fate determination of neural crest cells to glial lineages in the developing peripheral nervous system.
    Kipanyula MJ; Kimaro WH; Yepnjio FN; Aldebasi YH; Farahna M; Nwabo Kamdje AH; Abdel-Magied EM; Seke Etet PF
    Cell Signal; 2014 Apr; 26(4):673-82. PubMed ID: 24378534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental signals and neural crest cells.
    Poirier V; Boisseau S; Poujeol C; Simonneau M
    J Physiol Paris; 1994; 88(4):265-9. PubMed ID: 7874088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the Schwann cell lineage: from the neural crest to the myelinated nerve.
    Woodhoo A; Sommer L
    Glia; 2008 Nov; 56(14):1481-1490. PubMed ID: 18803317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cells and transcription factors in the development of the mammalian neural crest.
    Anderson DJ
    FASEB J; 1994 Jul; 8(10):707-13. PubMed ID: 8050669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [At the border of pluri- and multipotency: the neural crest stem cells].
    Kudlik G; Matula Z; Kovács T; Urbán SV; Uher F
    Orv Hetil; 2015 Oct; 156(42):1683-94. PubMed ID: 26551308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple roles of Sox2, an HMG-box transcription factor in avian neural crest development.
    Wakamatsu Y; Endo Y; Osumi N; Weston JA
    Dev Dyn; 2004 Jan; 229(1):74-86. PubMed ID: 14699579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural development: instructions for neural diversity.
    Lillien L
    Curr Biol; 1997 Mar; 7(3):R168-71. PubMed ID: 9162481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural crest development is regulated by the transcription factor Sox9.
    Cheung M; Briscoe J
    Development; 2003 Dec; 130(23):5681-93. PubMed ID: 14522876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural crest cells: from developmental biology to clinical interventions.
    Noisa P; Raivio T
    Birth Defects Res C Embryo Today; 2014 Sep; 102(3):263-74. PubMed ID: 25226872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factors regulating neural crest cell fate decisions.
    Sommer L
    Adv Exp Med Biol; 2006; 589():197-205. PubMed ID: 17076283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro.
    Shao M; Liu C; Song Y; Ye W; He W; Yuan G; Gu S; Lin C; Ma L; Zhang Y; Tian W; Hu T; Chen Y
    J Mol Cell Biol; 2015 Oct; 7(5):441-54. PubMed ID: 26243590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell fate decisions during neural crest ontogeny.
    Kalcheim C; Kumar D
    Int J Dev Biol; 2017; 61(3-4-5):195-203. PubMed ID: 28621417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.