BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 11545276)

  • 1. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins).
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):585-600. PubMed ID: 11545276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction.
    Battesti A; Bouveret E
    J Bacteriol; 2009 Jan; 191(2):616-24. PubMed ID: 18996989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis.
    Nanamiya H; Kasai K; Nozawa A; Yun CS; Narisawa T; Murakami K; Natori Y; Kawamura F; Tozawa Y
    Mol Microbiol; 2008 Jan; 67(2):291-304. PubMed ID: 18067544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants.
    Tozawa Y; Nomura Y
    Plant Biol (Stuttg); 2011 Sep; 13(5):699-709. PubMed ID: 21815973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene.
    Das B; Pal RR; Bag S; Bhadra RK
    Mol Microbiol; 2009 Apr; 72(2):380-98. PubMed ID: 19298370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans.
    He P; Deng C; Liu B; Zeng L; Zhao W; Zhang Y; Jiang X; Guo X; Qin J
    FEMS Microbiol Lett; 2013 Nov; 348(2):133-42. PubMed ID: 24111633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus.
    Kasai K; Nishizawa T; Takahashi K; Hosaka T; Aoki H; Ochi K
    J Bacteriol; 2006 Oct; 188(20):7111-22. PubMed ID: 17015650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life.
    Atkinson GC; Tenson T; Hauryliuk V
    PLoS One; 2011; 6(8):e23479. PubMed ID: 21858139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2001 Jan; 3(1):1-20. PubMed ID: 11200221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences.
    Stepkowski T; Brzeziński K; Legocki AB; Jaskólski M; Béna G
    Mol Phylogenet Evol; 2005 Jan; 34(1):15-28. PubMed ID: 15579379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic relationship of the stringent response-related genes of marine bacteria.
    Guzow-Krzemińska B; Gąsior T; Szalewska-Pałasz A
    Acta Biochim Pol; 2015; 62(4):773-83. PubMed ID: 26641635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the evolution of the archeal tryptophan synthase.
    Merkl R
    BMC Evol Biol; 2007 Apr; 7():59. PubMed ID: 17425797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis.
    Mechold U; Cashel M; Steiner K; Gentry D; Malke H
    J Bacteriol; 1996 Mar; 178(5):1401-11. PubMed ID: 8631718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomes in flux: the evolution of archaeal and proteobacterial gene content.
    Snel B; Bork P; Huynen MA
    Genome Res; 2002 Jan; 12(1):17-25. PubMed ID: 11779827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SpoT Induces Intracellular
    Fitzsimmons LF; Liu L; Kant S; Kim JS; Till JK; Jones-Carson J; Porwollik S; McClelland M; Vazquez-Torres A
    mBio; 2020 Feb; 11(1):. PubMed ID: 32098823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli.
    Vinella D; Albrecht C; Cashel M; D'Ari R
    Mol Microbiol; 2005 May; 56(4):958-70. PubMed ID: 15853883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional regulation of the opposing (p)ppGpp synthetase/hydrolase activities of RelMtb from Mycobacterium tuberculosis.
    Avarbock A; Avarbock D; Teh JS; Buckstein M; Wang ZM; Rubin H
    Biochemistry; 2005 Jul; 44(29):9913-23. PubMed ID: 16026164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of vibrio cholerae DeltarelA DeltaspoT double mutants.
    Das B; Bhadra RK
    Arch Microbiol; 2008 Mar; 189(3):227-38. PubMed ID: 17968531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (p)ppGpp controls stringent factors by exploiting antagonistic allosteric coupling between catalytic domains.
    Roghanian M; Van Nerom K; Takada H; Caballero-Montes J; Tamman H; Kudrin P; Talavera A; Dzhygyr I; Ekström S; Atkinson GC; Garcia-Pino A; Hauryliuk V
    Mol Cell; 2021 Aug; 81(16):3310-3322.e6. PubMed ID: 34416138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities.
    Martínez-Costa OH; Fernández-Moreno MA; Malpartida F
    J Bacteriol; 1998 Aug; 180(16):4123-32. PubMed ID: 9696759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.