These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11545322)

  • 1. X-ray spectral simulation and experimental detection of phosphorus segregation to grain boundaries in the presence of molybdenum.
    Papworth AJ; Watanabe M; Williams DB
    Ultramicroscopy; 2001 Sep; 88(4):265-74. PubMed ID: 11545322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study on the determination of molybdenum and other elements in ferromolybdenum alloy by EDX].
    Li Y; Dong XW; Yu ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1444-7. PubMed ID: 17944434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation.
    Howell PG; Boyde A
    Calcif Tissue Int; 2003 Jun; 72(6):745-9. PubMed ID: 14563004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of quantitative electron energy loss spectroscopy in the low loss region: phosphorus L-edge.
    Wang YY; Ho R; Shao Z; Somlyo AP
    Ultramicroscopy; 1992; 41(1-3):11-31. PubMed ID: 1641912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis.
    Payne CM; Cromey DW
    J Forensic Sci; 1990 May; 35(3):560-8. PubMed ID: 2348174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy.
    Newbury DE
    J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The f-ratio model for quantitative X-ray microanalysis.
    Teng C; Gauvin R
    Talanta; 2021 Dec; 235():122765. PubMed ID: 34517626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnosis of electrocution: The application of scanning electron microscope and energy-dispersive X-ray spectroscopy in five cases.
    Visonà SD; Chen Y; Bernardi P; Andrello L; Osculati A
    Forensic Sci Int; 2018 Mar; 284():107-116. PubMed ID: 29408719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of scanning electron microscopy and x-ray microanalysis in the identification of urinary crystals.
    Khan SR; Hackett RL
    Scanning Microsc; 1987 Sep; 1(3):1405-11. PubMed ID: 3659871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of large solid angles of collection on quantitative X-ray microanalysis in the AEM.
    Watanabe M; Ackland DW; Williams DB
    J Microsc; 1999 Jul; 195(Pt 1):34-43. PubMed ID: 10444300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).
    Newbury DE; Ritchie NW
    J Mater Sci; 2015; 50(2):493-518. PubMed ID: 26346887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to test the performance of an energy-dispersive X-ray spectrometer (EDS).
    Hodoroaba VD; Procop M
    Microsc Microanal; 2014 Oct; 20(5):1556-64. PubMed ID: 25033259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate quantification of phosphorus intergranular segregation in iron by STEM-EDX.
    Hsu CY; Stodolna J; Todeschini P; Delabrouille F; Radiguet B; Christien F
    Micron; 2022 Feb; 153():103175. PubMed ID: 34826758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron spectroscopic imaging: parallel energy filtering and microanalysis in the fixed-beam electron microscope.
    Ottensmeyer FP
    J Ultrastruct Res; 1984 Aug; 88(2):121-34. PubMed ID: 6400028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental analytical electron microscopic studies on the quantitative analysis of elemental concentrations in biological thin specimens and its application to dental science].
    Hirayama A
    Shikwa Gakuho; 1990 Aug; 90(8):1019-36. PubMed ID: 2134979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preparation, examination and analysis of frozen hydrated tissue sections by scanning transmission electron microscopy and x-ray microanalysis.
    Saubermann AJ; Echlin P
    J Microsc; 1975 Nov; 105(2):155-91. PubMed ID: 765465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid and reliable detection of bacterial endospores in environmental samples by diagnostic electron microscopy combined with X-ray microanalysis.
    Laue M; Fulda G
    J Microbiol Methods; 2013 Jul; 94(1):13-21. PubMed ID: 23603002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure, composition, formation and possible functions of calcareous corpuscles in Trilocularia acanthiaevulgaris Olsson 1867 (Cestoda, Tetraphyllidea).
    McCullough JS; Fairweather I
    Parasitol Res; 1987; 74(2):175-82. PubMed ID: 3438298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of biomineralization: an in-vitro tissue culture system and microanalysis of calcium, phosphorus and trace elements by total-reflection X-ray fluorescence.
    Niemann A; von Bohlen A; Klockenkämper R; Keck E
    Biochem Biophys Res Commun; 1990 Aug; 170(3):1216-22. PubMed ID: 2390087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray microanalysis of epon sections after oxygen plasma microincineration.
    Barnard T; Thomas RS
    J Microsc; 1978 Aug; 113(3):269-76. PubMed ID: 712821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.