These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11545385)

  • 1. An exactly solvable Ogston model of gel electrophoresis: VIII. Nonconducting gel fibers, curved field lines, and the Nernst-Einstein relation.
    Mercier JF; Tessier F; Slater GW
    Electrophoresis; 2001 Aug; 22(13):2631-8. PubMed ID: 11545385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An exactly solvable Ogston model of gel electrophoresis IV: sieving through periodic three-dimensional gels.
    Mercier JF; Slater GW
    Electrophoresis; 1998 Jul; 19(10):1560-5. PubMed ID: 9719525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure.
    Slater GW; Guo HL
    Electrophoresis; 1996 Jun; 17(6):977-88. PubMed ID: 8832162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An exactly solvable Ogston model of gel electrophoresis. II. Sieving through periodic gels.
    Slater GW; Guo HL
    Electrophoresis; 1996 Sep; 17(9):1407-15. PubMed ID: 8905255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ogston gel electrophoretic sieving: how is the fractional volume available to a particle related to its mobility and diffusion coefficient(s)?
    Slater GW; Guo HL
    Electrophoresis; 1995 Jan; 16(1):11-5. PubMed ID: 7737083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When can the Ogston-Morris-Rodbard-Chrambach model be applied to gel electrophoresis?
    Locke BR; Trinh SH
    Electrophoresis; 1999 Nov; 20(17):3331-4. PubMed ID: 10608696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An exactly solvable Ogston model of gel electrophoresis. VI. Towards a theory for macromolecules.
    Boileau J; Slater GW
    Electrophoresis; 2001; 22(4):673-83. PubMed ID: 11296922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An exactly solvable Ogston model of gel electrophoresis: X. Application to high-field separation techniques.
    Gauthier MG; Slater GW
    Electrophoresis; 2003 Jan; 24(3):441-51. PubMed ID: 12569535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.
    Rill RL; Beheshti A; Van Winkle DH
    Electrophoresis; 2002 Aug; 23(16):2710-9. PubMed ID: 12210176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gel electrophoretic mobility of charged particles in a medium with curved channels.
    Fridrikh S; Gotlib Y; Belenkij B
    Electrophoresis; 1997 Jan; 18(1):26-33. PubMed ID: 9059817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exactly solvable Ogston model of gel electrophoresis. V. Attractive gel-analyte interactions and their effects on the Ferguson plot.
    Labrie J; Mercier JF; Slater GW
    Electrophoresis; 2000 Mar; 21(5):823-33. PubMed ID: 10768765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of obstacle conductivity and electric field on effective mobility and dispersion in electrophoretic transport: a volume averaging approach.
    Locke BR
    Electrophoresis; 2002 Aug; 23(16):2745-54. PubMed ID: 12210179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Universal interpolating function for the dispersion coefficient of DNA fragments in sieving matrices.
    Mercier JF; Slater GW
    Electrophoresis; 2006 Apr; 27(8):1453-61. PubMed ID: 16609930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion coefficient of DNA molecules during free solution electrophoresis.
    Nkodo AE; Garnier JM; Tinland B; Ren H; Desruisseaux C; McCormick LC; Drouin G; Slater GW
    Electrophoresis; 2001 Aug; 22(12):2424-32. PubMed ID: 11519946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topological effects on the electrophoretic mobility of rigid rodlike DNA in polyacrylamide gels.
    Heuer DM; Saha S; Archer LA
    Biopolymers; 2003 Dec; 70(4):471-81. PubMed ID: 14648758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive interpretation of gel electrophoresis data.
    Yuan C; Rhoades E; Heuer DM; Saha S; Lou XW; Archer LA
    Anal Chem; 2006 Sep; 78(17):6179-86. PubMed ID: 16944900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel electrophoretic mobility of single-stranded DNA: the two reptation field-dependent factors.
    Rousseau J; Drouin G; Slater GW
    Electrophoresis; 2000 May; 21(8):1464-70. PubMed ID: 10832874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of electric field intensity, ionic strength, and migration distance on the mobility and diffusion in DNA surface electrophoresis.
    Li B; Fang X; Luo H; Petersen E; Seo YS; Samuilov V; Rafailovich M; Sokolov J; Gersappe D; Chu B
    Electrophoresis; 2006 Apr; 27(7):1312-21. PubMed ID: 16518776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sieving mechanisms in polymeric matrices.
    Sartori A; Barbier V; Viovy JL
    Electrophoresis; 2003 Jan; 24(3):421-40. PubMed ID: 12569534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation performance of single-stranded DNA electrophoresis in photopolymerized cross-linked polyacrylamide gels.
    Lo RC; Ugaz VM
    Electrophoresis; 2006 Feb; 27(2):373-86. PubMed ID: 16331587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.