These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11545746)
1. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Burton BM; Williams TL; Baker TA Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746 [TBL] [Abstract][Full Text] [Related]
2. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex. Burton BM; Baker TA Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828 [TBL] [Abstract][Full Text] [Related]
3. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Abdelhakim AH; Sauer RT; Baker TA Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746 [TBL] [Abstract][Full Text] [Related]
4. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Burton BM; Baker TA Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622 [TBL] [Abstract][Full Text] [Related]
5. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Abdelhakim AH; Oakes EC; Sauer RT; Baker TA Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325 [TBL] [Abstract][Full Text] [Related]
6. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Levchenko I; Luo L; Baker TA Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391 [TBL] [Abstract][Full Text] [Related]
7. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Levchenko I; Yamauchi M; Baker TA Genes Dev; 1997 Jun; 11(12):1561-72. PubMed ID: 9203582 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX. Ling L; MontaƱo SP; Sauer RT; Rice PA; Baker TA J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Kim YI; Burton RE; Burton BM; Sauer RT; Baker TA Mol Cell; 2000 Apr; 5(4):639-48. PubMed ID: 10882100 [TBL] [Abstract][Full Text] [Related]
10. Versatile action of Escherichia coli ClpXP as protease or molecular chaperone for bacteriophage Mu transposition. Jones JM; Welty DJ; Nakai H J Biol Chem; 1998 Jan; 273(1):459-65. PubMed ID: 9417104 [TBL] [Abstract][Full Text] [Related]
11. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Maillard RA; Chistol G; Sen M; Righini M; Tan J; Kaiser CM; Hodges C; Martin A; Bustamante C Cell; 2011 Apr; 145(3):459-69. PubMed ID: 21529717 [TBL] [Abstract][Full Text] [Related]
12. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Glynn SE; Martin A; Nager AR; Baker TA; Sauer RT Cell; 2009 Nov; 139(4):744-56. PubMed ID: 19914167 [TBL] [Abstract][Full Text] [Related]
13. DNA repair by the cryptic endonuclease activity of Mu transposase. Choi W; Harshey RM Proc Natl Acad Sci U S A; 2010 Jun; 107(22):10014-9. PubMed ID: 20167799 [TBL] [Abstract][Full Text] [Related]
14. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Kim YI; Levchenko I; Fraczkowska K; Woodruff RV; Sauer RT; Baker TA Nat Struct Biol; 2001 Mar; 8(3):230-3. PubMed ID: 11224567 [TBL] [Abstract][Full Text] [Related]
15. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Martin A; Baker TA; Sauer RT Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and characterization of a mouse homolog of bacterial ClpX, a novel mammalian class II member of the Hsp100/Clp chaperone family. Santagata S; Bhattacharyya D; Wang FH; Singha N; Hodtsev A; Spanopoulou E J Biol Chem; 1999 Jun; 274(23):16311-9. PubMed ID: 10347188 [TBL] [Abstract][Full Text] [Related]
17. Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone. Banecki B; Wawrzynow A; Puzewicz J; Georgopoulos C; Zylicz M J Biol Chem; 2001 Jun; 276(22):18843-8. PubMed ID: 11278349 [TBL] [Abstract][Full Text] [Related]
18. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. Wojtyra UA; Thibault G; Tuite A; Houry WA J Biol Chem; 2003 Dec; 278(49):48981-90. PubMed ID: 12937164 [TBL] [Abstract][Full Text] [Related]
19. ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis. Kruklitis R; Welty DJ; Nakai H EMBO J; 1996 Feb; 15(4):935-44. PubMed ID: 8631314 [TBL] [Abstract][Full Text] [Related]
20. PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits. Levchenko I; Smith CK; Walsh NP; Sauer RT; Baker TA Cell; 1997 Dec; 91(7):939-47. PubMed ID: 9428517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]