These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11545746)

  • 21. C-terminal domain mutations in ClpX uncouple substrate binding from an engagement step required for unfolding.
    Joshi SA; Baker TA; Sauer RT
    Mol Microbiol; 2003 Apr; 48(1):67-76. PubMed ID: 12657045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine.
    Stinson BM; Nager AR; Glynn SE; Schmitz KR; Baker TA; Sauer RT
    Cell; 2013 Apr; 153(3):628-39. PubMed ID: 23622246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit.
    Too PH; Erales J; Simen JD; Marjanovic A; Coffino P
    J Biol Chem; 2013 May; 288(19):13243-57. PubMed ID: 23530043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hinge-Linker Elements in the AAA+ Protein Unfoldase ClpX Mediate Intersubunit Communication, Assembly, and Mechanical Activity.
    Bell TA; Baker TA; Sauer RT
    Biochemistry; 2018 Dec; 57(49):6787-6796. PubMed ID: 30418765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates.
    Martin A; Baker TA; Sauer RT
    Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.
    Glynn SE; Nager AR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2012 May; 19(6):616-22. PubMed ID: 22562135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution structure of the dimeric zinc binding domain of the chaperone ClpX.
    Donaldson LW; Wojtyra U; Houry WA
    J Biol Chem; 2003 Dec; 278(49):48991-6. PubMed ID: 14525985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathways of protein remodeling by Escherichia coli molecular chaperones.
    Pak M; Wickner SH
    Genet Eng (N Y); 1996; 18():203-17. PubMed ID: 8785122
    [No Abstract]   [Full Text] [Related]  

  • 30. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease.
    Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z
    Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.
    Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP.
    Sharma S; Hoskins JR; Wickner S
    J Biol Chem; 2005 Feb; 280(7):5449-55. PubMed ID: 15591068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA.
    Weber-Ban EU; Reid BG; Miranker AD; Horwich AL
    Nature; 1999 Sep; 401(6748):90-3. PubMed ID: 10485712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new component of bacteriophage Mu replicative transposition machinery: the Escherichia coli ClpX protein.
    Mhammedi-Alaoui A; Pato M; Gama MJ; Toussaint A
    Mol Microbiol; 1994 Mar; 11(6):1109-16. PubMed ID: 8022280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases.
    Zolkiewski M
    Mol Microbiol; 2006 Sep; 61(5):1094-100. PubMed ID: 16879409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX.
    Stinson BM; Baytshtok V; Schmitz KR; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2015 May; 22(5):411-6. PubMed ID: 25866879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ClpX/P-Dependent Degradation of Novel Substrates in Streptococcus mutans.
    Gurung V; Biswas I
    J Bacteriol; 2022 Apr; 204(4):e0059421. PubMed ID: 35343773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes.
    Ortega J; Lee HS; Maurizi MR; Steven AC
    J Struct Biol; 2004; 146(1-2):217-26. PubMed ID: 15037252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP.
    Hoskins JR; Wickner S
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):909-14. PubMed ID: 16410355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.