BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11546801)

  • 1. A novel inhibitor of ceramide trafficking from the endoplasmic reticulum to the site of sphingomyelin synthesis.
    Yasuda S; Kitagawa H; Ueno M; Ishitani H; Fukasawa M; Nishijima M; Kobayashi S; Hanada K
    J Biol Chem; 2001 Nov; 276(47):43994-4002. PubMed ID: 11546801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells.
    Fukasawa M; Nishijima M; Hanada K
    J Cell Biol; 1999 Feb; 144(4):673-85. PubMed ID: 10037789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of ATP- and cytosol-dependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells.
    Funakoshi T; Yasuda S; Fukasawa M; Nishijima M; Hanada K
    J Biol Chem; 2000 Sep; 275(39):29938-45. PubMed ID: 10882735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide.
    Giussani P; Maceyka M; Le Stunff H; Mikami A; Lépine S; Wang E; Kelly S; Merrill AH; Milstien S; Spiegel S
    Mol Cell Biol; 2006 Jul; 26(13):5055-69. PubMed ID: 16782891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limonoid compounds inhibit sphingomyelin biosynthesis by preventing CERT protein-dependent extraction of ceramides from the endoplasmic reticulum.
    Hullin-Matsuda F; Tomishige N; Sakai S; Ishitsuka R; Ishii K; Makino A; Greimel P; Abe M; Laviad EL; Lagarde M; Vidal H; Saito T; Osada H; Hanada K; Futerman AH; Kobayashi T
    J Biol Chem; 2012 Jul; 287(29):24397-411. PubMed ID: 22605339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective synthesis and structure-activity relationship of novel ceramide trafficking inhibitors. (1R,3R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide and its analogues.
    Nakamura Y; Matsubara R; Kitagawa H; Kobayashi S; Kumagai K; Yasuda S; Hanada K
    J Med Chem; 2003 Aug; 46(17):3688-95. PubMed ID: 12904073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased ceramide transport protein (CERT) function alters sphingomyelin production following UVB irradiation.
    Charruyer A; Bell SM; Kawano M; Douangpanya S; Yen TY; Macher BA; Kumagai K; Hanada K; Holleran WM; Uchida Y
    J Biol Chem; 2008 Jun; 283(24):16682-92. PubMed ID: 18411267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide.
    Yamaji T; Horie A; Tachida Y; Sakuma C; Suzuki Y; Kushi Y; Hanada K
    Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27775668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ceramide transport from endoplasmic reticulum to Golgi apparatus is not vesicle-mediated.
    Kok JW; Babia T; Klappe K; Egea G; Hoekstra D
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):779-86. PubMed ID: 9677340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis.
    Allan D
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):603-10. PubMed ID: 10642519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT.
    Kawano M; Kumagai K; Nishijima M; Hanada K
    J Biol Chem; 2006 Oct; 281(40):30279-88. PubMed ID: 16895911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Ligand-Mimetic and Nonmimetic Inhibitors of the Ceramide Transport Protein CERT.
    Hanada K; Sakai S; Kumagai K
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute perturbations in Golgi organization impact de novo sphingomyelin synthesis.
    Chandran S; Machamer CE
    Traffic; 2008 Nov; 9(11):1894-904. PubMed ID: 18785922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms and regulation of ceramide transport.
    Perry RJ; Ridgway ND
    Biochim Biophys Acta; 2005 Jun; 1734(3):220-34. PubMed ID: 15907394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein.
    Perry RJ; Ridgway ND
    Mol Biol Cell; 2006 Jun; 17(6):2604-16. PubMed ID: 16571669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CERT and intracellular trafficking of ceramide.
    Hanada K; Kumagai K; Tomishige N; Kawano M
    Biochim Biophys Acta; 2007 Jun; 1771(6):644-53. PubMed ID: 17314061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide.
    Hanada K
    Mol Cell Biochem; 2006 Jun; 286(1-2):23-31. PubMed ID: 16601923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development.
    Elwell CA; Jiang S; Kim JH; Lee A; Wittmann T; Hanada K; Melancon P; Engel JN
    PLoS Pathog; 2011 Sep; 7(9):e1002198. PubMed ID: 21909260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramide in nitric oxide inhibition of glioma cell growth. Evidence for the involvement of ceramide traffic.
    Viani P; Giussani P; Brioschi L; Bassi R; Anelli V; Tettamanti G; Riboni L
    J Biol Chem; 2003 Mar; 278(11):9592-601. PubMed ID: 12515829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus.
    Futerman AH; Stieger B; Hubbard AL; Pagano RE
    J Biol Chem; 1990 May; 265(15):8650-7. PubMed ID: 2187869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.