BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11547124)

  • 1. Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
    Hernandez DJ; Sinkov VA; Roberts WW; Allaf ME; Patriciu A; Jarrett TW; Kavoussi LR; Stoianovici D
    J Urol; 2001 Oct; 166(4):1520-3. PubMed ID: 11547124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic system for percutaneous renal access.
    Cadeddu JA; Bzostek A; Schreiner S; Barnes AC; Roberts WW; Anderson JH; Taylor RH; Kavoussi LR
    J Urol; 1997 Oct; 158(4):1589-93. PubMed ID: 9302179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of needle-tip bioimpedance to facilitate percutaneous access of the urinary and biliary systems: first assessment of an experimental system.
    Roberts WW; Fugita OE; Kavoussi LR; Stoianovici D; Solomon SB
    Invest Radiol; 2002 Feb; 37(2):91-4. PubMed ID: 11799333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The "all-seeing needle": initial results of an optical puncture system confirming access in percutaneous nephrolithotomy.
    Bader MJ; Gratzke C; Seitz M; Sharma R; Stief CG; Desai M
    Eur Urol; 2011 Jun; 59(6):1054-9. PubMed ID: 21477921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy.
    Challacombe B; Patriciu A; Glass J; Aron M; Jarrett T; Kim F; Pinto P; Stoianovici D; Smeeton N; Tiptaft R; Kavoussi L; Dasgupta P
    Comput Aided Surg; 2005 May; 10(3):165-71. PubMed ID: 16321914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An alternative and inexpensive percutaneous access needle in pediatric patients.
    Penbegul N; Soylemez H; Bozkurt Y; Sancaktutar AA; Bodakci MN; Hatipoglu NK; Atar M; Yildirim K
    Urology; 2012 Oct; 80(4):938-40. PubMed ID: 22921707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of a novel one-step percutaneous nephrolithotomy sheath with a standard two-step device.
    Maynes LJ; Desai PJ; Zuppan CW; Barker BJ; Zimmerman GJ; Baldwin DD
    Urology; 2008 Feb; 71(2):223-7. PubMed ID: 18308088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal parenchymal injury after standard and mini percutaneous nephrostolithotomy.
    Traxer O; Smith TG; Pearle MS; Corwin TS; Saboorian H; Cadeddu JA
    J Urol; 2001 May; 165(5):1693-5. PubMed ID: 11342957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of intentional cryoablation and radio frequency ablation of renal tissue involving the collecting system in a porcine model.
    Janzen NK; Perry KT; Han KR; Kristo B; Raman S; Said JW; Belldegrun AS; Schulam PG
    J Urol; 2005 Apr; 173(4):1368-74. PubMed ID: 15758807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of a percutaneous fetoscopic access system for single-port tracheal occlusion.
    Hajivassiliou CA; Nelson SM; Dunkley PD; Cameron AD; Frank TG; Cuschieri A; Haddock G
    J Pediatr Surg; 2003 Jan; 38(1):45-50; discussion 45-50. PubMed ID: 12592616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introducer needle for percutaneous nephrostomy.
    Fuchs EF
    Urol Clin North Am; 1990 Feb; 17(1):91-3. PubMed ID: 2305528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large radiofrequency ablation lesions can be created with a retractable infusion-needle catheter.
    Sapp JL; Cooper JM; Zei P; Stevenson WG
    J Cardiovasc Electrophysiol; 2006 Jun; 17(6):657-61. PubMed ID: 16836718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance-based tissue discrimination for needle guidance.
    Kalvøy H; Frich L; Grimnes S; Martinsen OG; Hol PK; Stubhaug A
    Physiol Meas; 2009 Feb; 30(2):129-40. PubMed ID: 19136732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT data-based navigation for post-mortem biopsy--a feasibility study.
    Aghayev E; Ebert LC; Christe A; Jackowski C; Rudolph T; Kowal J; Vock P; Thali MJ
    J Forensic Leg Med; 2008 Aug; 15(6):382-7. PubMed ID: 18586209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percutaneous MR imaging-guided transvascular access of mesenteric venous system: study in swine model.
    Arepally A; Karmarkar PV; Weiss C; Atalar E
    Radiology; 2006 Jan; 238(1):113-8. PubMed ID: 16373762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The "visual dilator system": initial experimental evaluation of an optical tract dilation technique in percutaneous nephrolithotomy.
    Shah AK; Xu K; Liu H; Lin T; Xie K; Huang H; Han J; Fan X; Chen J; Huang J
    J Endourol; 2013 Jul; 27(7):908-13. PubMed ID: 23461420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereotactic mechanical percutaneous renal access.
    Cadeddu JA; Stoianovici D; Chen RN; Moore RG; Kavoussi LR
    J Endourol; 1998 Apr; 12(2):121-5. PubMed ID: 9607436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new percutaneous nephrostomy technique in the treatment of obstructive uropathy.
    Agostini S; Dedola GL; Gabbrielli S; Masi A
    Radiol Med; 2003; 105(5-6):454-61. PubMed ID: 12949456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing and Simulating Needle Insertion Forces for Percutaneous Renal Access.
    Poniatowski LH; Somani SS; Veneziano D; McAdams S; Sweet RM
    J Endourol; 2016 Oct; 30(10):1049-1055. PubMed ID: 27519947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remote percutaneous renal access using a new automated telesurgical robotic system.
    Bauer J; Lee BR; Stoianovici D; Bishoff JT; Micali S; Micali F; Kavoussi LR
    Telemed J E Health; 2001; 7(4):341-6. PubMed ID: 11886670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.