BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11547810)

  • 41. Postnatal development of cochlear function in the mustached bat, Pteronotus parnellii.
    Kössl M; Foeller E; Drexl M; Vater M; Mora E; Coro F; Russell IJ
    J Neurophysiol; 2003 Oct; 90(4):2261-73. PubMed ID: 14534266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cochlear resonance in the mustached bat: behavioral adaptations.
    Henson OW; Koplas PA; Keating AW; Huffman RF; Henson MM
    Hear Res; 1990 Dec; 50(1-2):259-73. PubMed ID: 2076977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electromotility of outer hair cells from the cochlea of the echolocating bat, Carollia perspicillata.
    Reuter G; Kössl M; Hemmert W; Preyer S; Zimmermann U; Zenner HP
    J Comp Physiol A; 1994 Oct; 175(4):449-55. PubMed ID: 7965917
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient Abnormalities in Masking Tuning Curve in Early Progressive Hearing Loss Mouse Model.
    Souchal M; Labanca L; Alves da Silva Carvalho S; Macedo de Resende L; Blavignac C; Avan P; Giraudet F
    Biomed Res Int; 2018; 2018():6280969. PubMed ID: 29662891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats.
    Rübsamen R; Schäfer M
    J Comp Physiol A; 1990 Dec; 167(6):771-84. PubMed ID: 2086791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Distortion product otoacoustic emissions in an animal model of induced hyperinsulinemia.
    Zuma e Maia FC; Lavinsky L
    Int Tinnitus J; 2006; 12(2):133-9. PubMed ID: 17260878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM; Feeney MP; Gates GA
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Possibility for quantitative and frequency-specific assessment of auditory threshold with otoacoustic emissions].
    Dreher A; Suckfüll M; Schneeweiss S; Schorn K
    Laryngorhinootologie; 1997 Jan; 76(1):2-7. PubMed ID: 9156504
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High frequency distortion products from the ears of two bat species, Megaderma lyra and Carollia perspicillata.
    Kössl M
    Hear Res; 1992 Jul; 60(2):156-64. PubMed ID: 1639726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells.
    Kamiya K; Michel V; Giraudet F; Riederer B; Foucher I; Papal S; Perfettini I; Le Gal S; Verpy E; Xia W; Seidler U; Georgescu MM; Avan P; El-Amraoui A; Petit C
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9307-12. PubMed ID: 24920589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of functional and morphologic characteristics of mice models of noise-induced hearing loss.
    Park SN; Back SA; Park KH; Seo JH; Noh HI; Akil O; Lustig LR; Yeo SW
    Auris Nasus Larynx; 2013 Feb; 40(1):11-7. PubMed ID: 22364846
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity.
    Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM
    Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted.
    Bowling T; Wen H; Meenderink SWF; Dong W; Meaud J
    Sci Rep; 2021 Jul; 11(1):13651. PubMed ID: 34211051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development of a single frequency place in the mammalian cochlea: the cochlear resonance in the mustached bat Pteronotus parnellii.
    Russell IJ; Drexl M; Foeller E; Vater M; Kössl M
    J Neurosci; 2003 Nov; 23(34):10971-81. PubMed ID: 14645493
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs.
    Moulin A
    J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions.
    Drexl M; Henke J; Kössl M
    Hear Res; 2004 Aug; 194(1-2):135-42. PubMed ID: 15276684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.