BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 11548001)

  • 41. Can nutrient loads predict marine water quality?
    Pelley J
    Environ Sci Technol; 2005 Jan; 39(2):37A-38A. PubMed ID: 15707035
    [No Abstract]   [Full Text] [Related]  

  • 42. Nutrient management for coastal zones: a case study of the nitrogen load to the Stockholm Archipelago.
    Scharin H
    Water Sci Technol; 2002; 45(9):309-15. PubMed ID: 12079119
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A; Stålnacke P
    Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic phosphorus mass balance modeling of large watersheds: long-term implications of management strategies.
    Cassell EA; Kort RL; Meals DW; Aschmann SG; Dorioz JM; Anderson DP
    Water Sci Technol; 2001; 43(5):153-62. PubMed ID: 11379127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Environmental water-quality zones for streams: a regional classification scheme.
    Robertson DM; Saad DA
    Environ Manage; 2003 May; 31(5):581-602. PubMed ID: 12719890
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Goals and remedial strategies for water quality and wildlife management in a coastal lagoon--a case-study of Ringkøbing Fjord, Denmark.
    Håkanson L; Bryhn AC
    J Environ Manage; 2008 Feb; 86(3):498-519. PubMed ID: 17275160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. External nutrient loading from land, sea and atmosphere to all 656 Swedish coastal water bodies.
    Bryhn AC; Dimberg PH; Bergström L; Fredriksson RE; Mattila J; Bergström U
    Mar Pollut Bull; 2017 Jan; 114(2):664-670. PubMed ID: 27780582
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of residence times on River Mondego estuary eutrophication vulnerability.
    Duarte AS; Pinho JL; Pardal MA; Neto JM; Vieira JP; Santos FS
    Water Sci Technol; 2001; 44(2-3):329-36. PubMed ID: 11548002
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales.
    Drewry JJ; Newham LT; Greene RS
    J Environ Manage; 2011 Mar; 92(3):639-49. PubMed ID: 20980094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(4):972-84. PubMed ID: 20729603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basin characteristics and nutrient losses: the EUROHARP catchment network perspective.
    Bouraoui F; Grizzetti B; Adelsköld G; Behrendt H; de Miguel I; Silgram M; Gómez S; Granlund K; Hoffmann L; Kronvang B; Kvaernø S; Lázár A; Mimikou M; Passarella G; Panagos P; Reisser H; Schwarzl B; Siderius C; Sileika AS; Smit AA; Sugrue R; Vanliedekerke M; Zaloudik J
    J Environ Monit; 2009 Mar; 11(3):515-25. PubMed ID: 19280031
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland.
    Nasr A; Bruen M; Jordan P; Moles R; Kiely G; Byrne P
    Water Res; 2007 Mar; 41(5):1065-73. PubMed ID: 17258266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Which offers more scope to suppress river phytoplankton blooms: reducing nutrient pollution or riparian shading?
    Hutchins MG; Johnson AC; Deflandre-Vlandas A; Comber S; Posen P; Boorman D
    Sci Total Environ; 2010 Oct; 408(21):5065-77. PubMed ID: 20692020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Incorporating uncertainty into predictions of diffuse-source phosphorus transfers (using readily available data).
    Murdoch EG; Whelan MJ; Grieve IC
    Water Sci Technol; 2005; 51(3-4):339-46. PubMed ID: 15850207
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological and chemical evaluation of sewage water pollution in the Rietvlei nature reserve wetland area, South Africa.
    Oberholster PJ; Botha AM; Cloete TE
    Environ Pollut; 2008 Nov; 156(1):184-92. PubMed ID: 18280017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Do food processing industries contribute to the eutrophication of aquatic systems?
    Tusseau-Vuillemin MH
    Ecotoxicol Environ Saf; 2001 Oct; 50(2):143-52. PubMed ID: 11689030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.
    Vigiak O; Rattray D; McInnes J; Newham LT; Roberts AM
    J Environ Manage; 2012 Nov; 110():215-25. PubMed ID: 22796756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Is the destabilisation of lake peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading?
    Nõges T; Laugaste R; Loigu E; Nedogarko I; Skakalski B; Nõges P
    Water Sci Technol; 2005; 51(3-4):267-74. PubMed ID: 15850199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eutrophication of agricultural streams: defining nutrient concentrations to protect ecological condition.
    Chambers PA; Vis C; Brua RB; Guy M; Culp JM; Benoy GA
    Water Sci Technol; 2008; 58(11):2203-10. PubMed ID: 19092197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimating annual generation rates of total P and total N for different land uses in Tasmania, Australia.
    Broad ST; Corkrey R
    J Environ Manage; 2011 Jun; 92(6):1609-17. PubMed ID: 21354692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.