BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11548005)

  • 1. Degradation of lignin and lignin model compound under sulfate reducing condition.
    Pareek S; Azuma JI; Matsui S; Shimizu Y
    Water Sci Technol; 2001; 44(2-3):351-8. PubMed ID: 11548005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.
    Ko JJ; Shimizu Y; Ikeda K; Kim SK; Park CH; Matsui S
    Bioresour Technol; 2009 Feb; 100(4):1622-7. PubMed ID: 18977138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds.
    Ma R; Guo M; Lin KT; Hebert VR; Zhang J; Wolcott MP; Quintero M; Ramasamy KK; Chen X; Zhang X
    Chemistry; 2016 Jul; 22(31):10884-91. PubMed ID: 27373451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 5. Degradation of benzyl ether bonds of lignin by ruminal microbes.
    Kajikawa H; Kudo H; Kondo T; Jodai K; Honda Y; Kuwahara M; Watanabe T
    FEMS Microbiol Lett; 2000 Jun; 187(1):15-20. PubMed ID: 10828393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of non-phenolic beta-o-4 lignin substructure model compounds by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Res Microbiol; 1992; 143(3):333-9. PubMed ID: 1448618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the degradation process of kraft lignin by β-proteobacterium, Pandoraea sp. ISTKB.
    Kumar M; Singh J; Singh MK; Singhal A; Thakur IS
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15690-702. PubMed ID: 26018290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oxidized leachate on degradation of lignin by sulfate-reducing bacteria.
    Kim JH; Kim M; Bae W
    Waste Manag Res; 2009 Aug; 27(5):520-6. PubMed ID: 19423591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill.
    Chen L; Nanny MA; Knappe DR; Wagner TB; Ratasuk N
    Environ Sci Technol; 2004 Jul; 38(13):3542-50. PubMed ID: 15296303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal degradation of lignin: products analysis for phenol formaldehyde adhesive synthesis.
    Yang S; Yuan TQ; Li MF; Sun RC
    Int J Biol Macromol; 2015 Jan; 72():54-62. PubMed ID: 25109457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin.
    Lancefield CS; Ojo OS; Tran F; Westwood NJ
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):258-62. PubMed ID: 25377996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereospecificity in enzymic and non-enzymic oxidation of beta-O-4 lignin model compounds.
    Jönsson L; Karlsson O; Lundquist K; Nyman PO
    FEBS Lett; 1990 Dec; 276(1-2):45-8. PubMed ID: 2265710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of kraft lignin under hydrothermal conditions.
    Zhou XF
    Bioresour Technol; 2014 Oct; 170():583-586. PubMed ID: 25176169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus amyloliquefaciens CotA degradation of the lignin model compound guaiacylglycerol-β-guaiacyl ether.
    Yang J; Gao MY; Li M; Li ZZ; Li H; Li HY
    Lett Appl Microbiol; 2018 Nov; 67(5):491-496. PubMed ID: 30091245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Niemenmaa O; Uusi-Rauva A; Hatakka A
    Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural modifications induced during biodegradation of wheat lignin by Lentinula edodes.
    Crestini C; Sermanni GG; Argyropoulos DS
    Bioorg Med Chem; 1998 Jul; 6(7):967-73. PubMed ID: 9730232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds.
    McNally AM; Moody EC; McNeill K
    Photochem Photobiol Sci; 2005 Mar; 4(3):268-74. PubMed ID: 15738994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.