BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11548021)

  • 1. Performance of the full-scale biological nutrient removal plant at Noosa in Queensland, Australia: nutrient removal and disinfection.
    Urbain V; Wright P; Thomas M
    Water Sci Technol; 2001; 44(2-3):57-62. PubMed ID: 11548021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimisation of Noosa BNR plant to improve performance and reduce operating costs.
    Thomas M; Wright P; Blackall L; Urbain V; Keller J
    Water Sci Technol; 2003; 47(12):141-8. PubMed ID: 12926681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal processes for low strength wastewater.
    Shin HS; Park MG; Jung JY
    Environ Technol; 2001 Aug; 22(8):889-95. PubMed ID: 11561946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of prefermentation on denitrifying phosphorus removal in slaughterhouse wastewater.
    Merzouki M; Bernet N; Delgenès JP; Benlemlih M
    Bioresour Technol; 2005 Aug; 96(12):1317-22. PubMed ID: 15792577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing post-anoxic denitrification for biological nutrient removal.
    Winkler M; Coats ER; Brinkman CK
    Water Res; 2011 Nov; 45(18):6119-30. PubMed ID: 21937071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of solids management on nutrient ratios for in-line wastewater prefermenters.
    Rössle WH; Pretorius WA
    Water Sci Technol; 2001; 44(2-3):77-83. PubMed ID: 11548024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sequencing batch reactor system for high-level biological nitrogen and phosphorus removal from abattoir wastewater.
    Lemaire R; Yuan Z; Bernet N; Marcos M; Yilmaz G; Keller J
    Biodegradation; 2009 Jun; 20(3):339-50. PubMed ID: 18937035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of membrane bioreactor process capabilities to meet stringent effluent nutrient discharge requirements.
    Fleischer EJ; Broderick TA; Daigger GT; Fonseca AD; Holbrook RD; Murthy SN
    Water Environ Res; 2005; 77(2):162-78. PubMed ID: 15816680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of a full-scale sequencing batch reactor operational mode for biological nutrient removal.
    Ersu C; Arslankaya E; Ong SK; Fox D; Aldrich L; Copeman J
    Water Environ Res; 2008 Mar; 80(3):257-66. PubMed ID: 18419014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrofitting conventional primary clarifiers to activated primary clarifiers to enhance nutrient removal and energy conservation in WWTPs in Beijing, China.
    Wang JW; Zhang TZ; Chen JN; Hu ZR
    Water Sci Technol; 2011; 63(7):1446-52. PubMed ID: 21508549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of influent prefermentation as a unit process upon biological nutrient removal.
    McCue T; Shah R; Vassiliev I; Liu YH; Eremektar FG; Chen Y; Randall AA
    Water Sci Technol; 2003; 47(11):9-15. PubMed ID: 12906265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in anoxic denitrification rate resulting from prefermentation of a septic, phosphorus-limited wastewater.
    McCue T; Naik R; Zepeda M; Liu YH; Vassiliev I; Randall AA
    Water Environ Res; 2004; 76(1):23-8. PubMed ID: 15058461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal.
    Cho E; Molof AH
    J Environ Manage; 2004 Nov; 73(3):183-7. PubMed ID: 15474735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological nitrogen and phosphorus removal in UCT-type MBR process.
    Lee H; Han J; Yun Z
    Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term performance summary for the Boot Wetland Treatment System.
    Martin JR; Keller CH; Clarke RA; Knight RL
    Water Sci Technol; 2001; 44(11-12):413-20. PubMed ID: 11804128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen and phosphorus removal under intermittent aeration conditions.
    Xia SQ; Gao TY; Zhou ZY
    J Environ Sci (China); 2002 Oct; 14(4):541-6. PubMed ID: 12491730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.
    Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA
    Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation of three parallel AN/AO processes to enrich denitrifying phosphorus removing bacteria for low strength wastewater treatment.
    Xia SQ; Liu HB
    J Environ Sci (China); 2006; 18(3):433-8. PubMed ID: 17294636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater.
    Gehr R; Wagner M; Veerasubramanian P; Payment P
    Water Res; 2003 Nov; 37(19):4573-86. PubMed ID: 14568042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient removal from wastewaters using high performance materials.
    Mackinnon ID; Barr K; Miller E; Hunter S; Pinel T
    Water Sci Technol; 2003; 47(11):101-7. PubMed ID: 12906277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.