These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11548157)

  • 1. Automated, microprocessor controlled short path thermal desorption system for analysis of volatiles in foods.
    Das VT; Hartman TG; Manos JN; Manura JJ; Baker CW
    Adv Exp Med Biol; 2001; 488():187-201. PubMed ID: 11548157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Headspace-gas chromatography: an ideal technique for sampling volatiles present in non-volatile matrices.
    Ettre LS
    Adv Exp Med Biol; 2001; 488():9-32. PubMed ID: 11548163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Choice and use of standards for dynamic headspace trapping and application to the analysis of the volatiles of baked potato.
    Ames JM; Duckham SC; Bakker J
    Adv Exp Med Biol; 2001; 488():133-41. PubMed ID: 11548152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Headspace techniques in foods, fragrances and flavors: an overview.
    Rouseff R; Cadwallader K
    Adv Exp Med Biol; 2001; 488():1-8. PubMed ID: 11548148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: database creation and evaluation of precision and robustness.
    Bianchi F; Careri M; Mangia A; Musci M
    J Sep Sci; 2007 Mar; 30(4):563-72. PubMed ID: 17444225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent desorption dynamic headspace sampling of fermented dairy product volatiles.
    Rankin SA
    Adv Exp Med Biol; 2001; 488():151-63. PubMed ID: 11548154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Studies of performance evaluation and criteria for trans-fatty acids analysis using GC-FID].
    Watanabe T; Ishikawa T; Matsuda R
    Shokuhin Eiseigaku Zasshi; 2013; 54(1):31-48. PubMed ID: 23470872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of two calibration procedures using thermal desorption-gas chromatography in the analysis of odorous volatile compounds.
    Kabir E; Kim KH
    J Chromatogr Sci; 2011 Oct; 49(9):731-8. PubMed ID: 22586250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.
    Marcillo A; Jakimovska V; Widdig A; Birkemeyer C
    J Chromatogr A; 2017 Sep; 1514():16-28. PubMed ID: 28765001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic headspace analysis of fresh tomato juices.
    Sucan MK; Russell GF
    Adv Exp Med Biol; 2001; 488():165-73. PubMed ID: 11548155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and validation of an automated spray-and-trap gas chromatograph for the determination of volatile organic compounds in aqueous samples.
    Yang KL; Lai CH; Wang JL
    J Chromatogr A; 2004 Feb; 1027(1-2):41-8. PubMed ID: 14971482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gc-olfactometry with solid phase microextraction of aroma volatiles from heated and unheated orange juice.
    Rouseff R; Bazemore R; Goodner K; Naim M
    Adv Exp Med Biol; 2001; 488():101-12. PubMed ID: 11548149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized apparatus for measuring dynamic flavor release from liquid food matrices.
    Rabe S; Krings U; Banavara DS; Berger RG
    J Agric Food Chem; 2002 Oct; 50(22):6440-7. PubMed ID: 12381131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel analysis of volatile fatty acids, indole, skatole, phenol, and trimethylamine from waste-related source environments.
    Rahman MM; Kim KH
    J Chromatogr A; 2013 Nov; 1314():241-8. PubMed ID: 24070624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purge-and-trap method for the determination of styrene in urine.
    Periago JF; Prado C; Luna A
    J Chromatogr A; 1996 Jan; 719(1):53-8. PubMed ID: 8589836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere.
    Tanner D; Helmig D; Hueber J; Goldan P
    J Chromatogr A; 2006 Apr; 1111(1):76-88. PubMed ID: 16497314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Process sampling module coupled with purge and trap-GC-FID for in situ auto-monitoring of volatile organic compounds in wastewater.
    Liu HW; Liu YT; Wu BZ; Nian HC; Chen HJ; Chiu KH; Lo JG
    Talanta; 2009 Dec; 80(2):903-8. PubMed ID: 19836571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A simple method for analyzing insect pheromone at the nanogram level by coupling headspace adsorption and thermal desorption injection by gas chromatography with a packed syringe].
    Liu D
    Se Pu; 1997 Mar; 15(2):122-4. PubMed ID: 15739397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system.
    Ribes A; Carrera G; Gallego E; Roca X; Berenguer MA; Guardino X
    J Chromatogr A; 2007 Jan; 1140(1-2):44-55. PubMed ID: 17187810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental performances study of a transportable GC-PID and two thermo-desorption based methods coupled to FID and MS detection to assess BTEX exposure at sub-ppb level in air.
    Liaud C; Nguyen NT; Nasreddine R; Le Calvé S
    Talanta; 2014 Sep; 127():33-42. PubMed ID: 24913854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.