These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 11548159)

  • 41. Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes.
    Rudnitskaya A; Legin A
    J Ind Microbiol Biotechnol; 2008 May; 35(5):443-451. PubMed ID: 18189151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples.
    Basu AK; Chattopadhyay P; Roychoudhuri U; Chakraborty R
    Bioelectrochemistry; 2007 May; 70(2):375-9. PubMed ID: 16814618
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality.
    Park J; Lim JH; Jin HJ; Namgung S; Lee SH; Park TH; Hong S
    Analyst; 2012 Jul; 137(14):3249-54. PubMed ID: 22497005
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors.
    Son M; Kim D; Ko HJ; Hong S; Park TH
    Biosens Bioelectron; 2017 Jan; 87():901-907. PubMed ID: 27664409
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Applications of Sensors and Biosensors in Investigating Drugs, Foods, and Nutraceuticals.
    Campanella L; Tomassetti M
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382422
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A high density microelectrode array biosensor for detection of E. coli O157:H7.
    Radke SM; Alocilja EC
    Biosens Bioelectron; 2005 Feb; 20(8):1662-7. PubMed ID: 15626625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Migration and sensory properties of plastics-based nets used as food-contacting materials under ambient and high temperature heating conditions.
    Kontominas MG; Goulas AE; Badeka AV; Nerantzaki A
    Food Addit Contam; 2006 Jun; 23(6):634-41. PubMed ID: 16766462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review of biosensing techniques for detection of trace carcinogen contamination in food products.
    Li Z; Yu Y; Li Z; Wu T
    Anal Bioanal Chem; 2015 Apr; 407(10):2711-26. PubMed ID: 25694149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Monitoring of taints related to printed solid boards with an electronic nose.
    Heiniö RL; Ahvenainen R
    Food Addit Contam; 2002; 19 Suppl():209-20. PubMed ID: 11962710
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Artificial neural networks in foodstuff analyses: Trends and perspectives A review.
    Marini F
    Anal Chim Acta; 2009 Mar; 635(2):121-31. PubMed ID: 19216869
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review on novel developments and applications of immunosensors in food analysis.
    Ricci F; Volpe G; Micheli L; Palleschi G
    Anal Chim Acta; 2007 Dec; 605(2):111-29. PubMed ID: 18036374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Food adulteration analysis without laboratory prepared or determined reference food adulterant values.
    Kalivas JH; Georgiou CA; Moira M; Tsafaras I; Petrakis EA; Mousdis GA
    Food Chem; 2014 Apr; 148():289-93. PubMed ID: 24262559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active food packaging technologies.
    Ozdemir M; Floros JD
    Crit Rev Food Sci Nutr; 2004; 44(3):185-93. PubMed ID: 15239372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzyme sensor array for the determination of biogenic amines in food samples.
    Lange J; Wittmann C
    Anal Bioanal Chem; 2002 Jan; 372(2):276-83. PubMed ID: 11936099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential for detection and discrimination between mycotoxigenic and non-toxigenic spoilage moulds using volatile production patterns: a review.
    Sahgal N; Needham R; Cabañes FJ; Magan N
    Food Addit Contam; 2007 Oct; 24(10):1161-8. PubMed ID: 17886189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensor strategies for microorganism detection--from physical principles to imprinting procedures.
    Dickert FL; Lieberzeit P; Hayden O
    Anal Bioanal Chem; 2003 Oct; 377(3):540-9. PubMed ID: 12920496
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Food for Thought: Optical Sensor Arrays and Machine Learning for the Food and Beverage Industry.
    Peveler WJ
    ACS Sens; 2024 Apr; 9(4):1656-1665. PubMed ID: 38598846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current Developments in Analyzing Food Volatiles by Multidimensional Gas Chromatographic Techniques.
    Cordero C; Schmarr HG; Reichenbach SE; Bicchi C
    J Agric Food Chem; 2018 Mar; 66(10):2226-2236. PubMed ID: 28110527
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.
    Pioggia G; Di Francesco F; Marchetti A; Ferro M; Leardi R; Ahluwalia A
    Biosens Bioelectron; 2007 May; 22(11):2624-8. PubMed ID: 17169548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AuNP-RF sensor: An innovative application of RF technology for sensing pathogens electrically in liquids (SPEL) within the food supply chain.
    Matta LL; Karuppuswami S; Chahal P; Alocilja EC
    Biosens Bioelectron; 2018 Jul; 111():152-158. PubMed ID: 29677636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.