BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 11548333)

  • 21. New calculations of the atmospheric cosmic radiation field--results for neutron spectra.
    Clem JM; De Angelis G; Goldhagen P; Wilson JW
    Radiat Prot Dosimetry; 2004; 110(1-4):423-8. PubMed ID: 15353685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of on-board measurements during solar storm periods.
    Beck P; Dyer C; Fuller N; Hands A; Latocha M; Rollet S; Spurný F
    Radiat Prot Dosimetry; 2009 Oct; 136(4):297-303. PubMed ID: 19825832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A NEW SEMI-EMPIRICAL AMBIENT TO EFFECTIVE DOSE CONVERSION MODEL FOR THE PREDICTIVE CODE FOR AIRCREW RADIATION EXPOSURE (PCAIRE).
    Dumouchel T; McCall M; Lemay F; Bennett L; Lewis B; Bean M
    Radiat Prot Dosimetry; 2016 Dec; 172(4):333-340. PubMed ID: 26622045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiation environment at aviation altitudes and in space.
    Sihver L; Ploc O; Puchalska M; Ambrožová I; Kubančák J; Kyselová D; Shurshakov V
    Radiat Prot Dosimetry; 2015 Jun; 164(4):477-83. PubMed ID: 25979747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.
    El-Jaby S; Richardson RB
    Life Sci Space Res (Amst); 2015 Jul; 6():1-9. PubMed ID: 26256622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In-flight measurements of radiation fields and doses.
    Tommasino L
    Radiat Prot Dosimetry; 1999; 86(4):297-301. PubMed ID: 11543398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A mathematical model of aircraft for evaluating the effects of shielding structure on aircrew exposure.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):331-5. PubMed ID: 16604655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Italian national survey of aircrew exposure: II. On-board measurements and results.
    Curzio G; Grillmaier RE; O'Sullivan D; Pelliccioni M; Piermattei S; Tommasino L
    Radiat Prot Dosimetry; 2001; 93(2):125-33. PubMed ID: 11548335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of cosmic rays inside an aircraft: spectral perturbation and dose reduction due to aircraft structures and contents.
    Yang ZY; Tsai BS; Huang YS; Sheu RJ
    Radiat Prot Dosimetry; 2023 Jul; 199(11):1174-1183. PubMed ID: 37227153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit".
    El-Jaby S
    Life Sci Space Res (Amst); 2016 Jun; 9():93-96. PubMed ID: 27345206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aircrew exposure from cosmic radiation on commercial airline routes.
    Lewis BJ; McCall MJ; Green AR; Bennett LG; Pierre M; Schrewe UJ; O'Brien K; Felsberger E
    Radiat Prot Dosimetry; 2001; 93(4):293-314. PubMed ID: 11548357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cosmic rays and dosimetry at aviation altitudes.
    O'Sullivan D; Zhou D; Heinrich W; Roesler S; Donnelly J; Keegan R; Flood E; Tommasino L
    Radiat Meas; 1999 Jun; 31(1-6):579-84. PubMed ID: 12025842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method applicable to effective dose rate estimates for aircrew dosimetry.
    Ferrari A; Pelliccioni M; Rancati T
    Radiat Prot Dosimetry; 2001; 96(1-3):219-22. PubMed ID: 11586734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NIOSH/FAA Working Women's Health Study: evaluation of the cosmic-radiation exposures of flight attendants. Federal Aviation Administration.
    Waters M; Bloom TF; Grajewski B
    Health Phys; 2000 Nov; 79(5):553-9. PubMed ID: 11045529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FLUKA simulation of TEPC response to cosmic radiation.
    Beck P; Ferrari A; Pelliccioni M; Rollet S; Villari R
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):327-30. PubMed ID: 16604654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation on contribution of neutron monitor data to estimation of aviation doses.
    Kákona M; Ploc O; Kyselová D; Kubančák J; Langer R; Kudela K
    Life Sci Space Res (Amst); 2016 Nov; 11():24-28. PubMed ID: 27993190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exposure to galactic cosmic radiation and solar energetic particles.
    O'Sullivan D
    Radiat Prot Dosimetry; 2007; 125(1-4):407-11. PubMed ID: 17846031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New operational dose quantity ambient dose
    Matthiä D; Meier MM; Schennetten K
    J Radiol Prot; 2022 Apr; 42(2):. PubMed ID: 35263735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid assessment of cosmic radiation exposure in aviation based on BP neural network method.
    Wang B; Fang M; Song D; Cheng J; Wu K
    Radiat Prot Dosimetry; 2024 Jun; 200(9):822-835. PubMed ID: 38794881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude.
    Goldhagen P; Clem JM; Wilson JW
    Radiat Prot Dosimetry; 2004; 110(1-4):387-92. PubMed ID: 15353679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.