BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11549014)

  • 1. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene.
    Wang CL; Lum AM; Ozuna SC; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):425-30. PubMed ID: 11549014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface.
    Wang CL; Maratukulam PD; Lum AM; Clark DS; Keasling JD
    Appl Environ Microbiol; 2000 Oct; 66(10):4497-502. PubMed ID: 11010904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies.
    Bai HJ; Zhang ZM; Yang GE; Li BZ
    Bioresour Technol; 2008 Nov; 99(16):7716-22. PubMed ID: 18358716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystalysin, a 46-kDa L-cysteine desulfhydrase from Treponema denticola: biochemical and biophysical characterization.
    Chu L; Ebersole JL; Kurzban GP; Holt SC
    Clin Infect Dis; 1999 Mar; 28(3):442-50. PubMed ID: 10194060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precipitation of cadmium by Clostridium thermoaceticum.
    Cunningham DP; Lundie LL
    Appl Environ Microbiol; 1993 Jan; 59(1):7-14. PubMed ID: 8439169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation.
    Tsai SL; Singh S; Dasilva NA; Chen W
    Biotechnol Bioeng; 2012 Feb; 109(2):605-8. PubMed ID: 21915851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli.
    Bang SW; Clark DS; Keasling JD
    Appl Environ Microbiol; 2000 Sep; 66(9):3939-44. PubMed ID: 10966412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    BMC Microbiol; 2013 Jul; 13():161. PubMed ID: 23855952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli.
    Awano N; Wada M; Kohdoh A; Oikawa T; Takagi H; Nakamori S
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):239-43. PubMed ID: 12883870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfhemoglobin formation in human erythrocytes by cystalysin, an L-cysteine desulfhydrase from Treponema denticola.
    Kurzban GP; Chu L; Ebersole JL; Holt SC
    Oral Microbiol Immunol; 1999 Jun; 14(3):153-64. PubMed ID: 10495709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface.
    Wang CL; Clark DS; Keasling JD
    Biotechnol Bioeng; 2001 Nov; 75(3):285-91. PubMed ID: 11590601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological comparison of D-cysteine desulfhydrase of Escherichia coli with 3-chloro-D-alanine dehydrochlorinase of Pseudomonas putida CR 1-1.
    Nagasawa T; Ishii T; Yamada H
    Arch Microbiol; 1988; 149(5):413-6. PubMed ID: 3132906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles.
    El-Baz AF; Sorour NM; Shetaia YM
    J Basic Microbiol; 2016 May; 56(5):520-30. PubMed ID: 26467054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-Cysteine Desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol.
    Romero LC; García I; Gotor C
    Plant Signal Behav; 2013 May; 8(5):e24007. PubMed ID: 23428891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of the L-cysteine desulfhydrase gene of Fusobacterium nucleatum.
    Fukamachi H; Nakano Y; Yoshimura M; Koga T
    FEMS Microbiol Lett; 2002 Sep; 215(1):75-80. PubMed ID: 12393204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of D-cysteine desulfhydrase in the adaptation of Escherichia coli to D-cysteine.
    Soutourina J; Blanquet S; Plateau P
    J Biol Chem; 2001 Nov; 276(44):40864-72. PubMed ID: 11527960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light.
    Xing SF; Tian HF; Yan Z; Song C; Wang SG
    J Hazard Mater; 2023 Sep; 458():131937. PubMed ID: 37421856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional analysis of Escherichia coli cysteine desulfhydrases.
    Awano N; Wada M; Mori H; Nakamori S; Takagi H
    Appl Environ Microbiol; 2005 Jul; 71(7):4149-52. PubMed ID: 16000837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms.
    Edwards CD; Beatty JC; Loiselle JB; Vlassov KA; Lefebvre DD
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3613-23. PubMed ID: 23344997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities.
    Chu L; Ebersole JL; Kurzban GP; Holt SC
    Infect Immun; 1997 Aug; 65(8):3231-8. PubMed ID: 9234780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.