These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11549138)

  • 1. Fatigue and endurance limits during intermittent overhead work.
    Nussbaum MA; Clark LL; Lanza MA; Rice KM
    AIHAJ; 2001; 62(4):446-56. PubMed ID: 11549138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue during prolonged intermittent overhead work: reliability of measures and effects of working height.
    Sood D; Nussbaum MA; Hager K
    Ergonomics; 2007 Apr; 50(4):497-513. PubMed ID: 17575711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicted endurance times during overhead work: influences of duty cycle and tool mass estimated using perceived discomfort.
    Sood D; Nussbaum MA; Hager K; Nogueira HC
    Ergonomics; 2017 Oct; 60(10):1405-1414. PubMed ID: 28277169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscular fatigue and endurance during intermittent static efforts: effects of contraction level, duty cycle, and cycle time.
    Iridiastadi H; Nussbaum MA
    Hum Factors; 2006; 48(4):710-20. PubMed ID: 17240719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle fatigue and endurance during repetitive intermittent static efforts: development of prediction models.
    Iridiastadi H; Nussbaum MA
    Ergonomics; 2006 Mar; 49(4):344-60. PubMed ID: 16690564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.
    Mehta RK; Agnew MJ
    Eur J Appl Physiol; 2012 Aug; 112(8):2891-902. PubMed ID: 22143842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and dynamic myoelectric measures of shoulder muscle fatigue during intermittent dynamic exertions of low to moderate intensity.
    Nussbaum MA
    Eur J Appl Physiol; 2001 Aug; 85(3-4):299-309. PubMed ID: 11560084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of cycle time on shoulder fatigue responses for a fixed total overhead workload.
    Dickerson CR; Meszaros KA; Cudlip AC; Chopp-Hurley JN; Langenderfer JE
    J Biomech; 2015 Aug; 48(11):2911-8. PubMed ID: 26117074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influences of obesity and age on functional performance during intermittent upper extremity tasks.
    Cavuoto LA; Nussbaum MA
    J Occup Environ Hyg; 2014; 11(9):583-90. PubMed ID: 24484265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle fatigue during intermittent isokinetic shoulder abduction: age effects and utility of electromyographic measures.
    Yassierli ; Nussbaum MA
    Ergonomics; 2007 Jul; 50(7):1110-26. PubMed ID: 17510825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of overhead work configuration on muscle activity during a simulated drilling task.
    Maciukiewicz JM; Cudlip AC; Chopp-Hurley JN; Dickerson CR
    Appl Ergon; 2016 Mar; 53 Pt A():10-6. PubMed ID: 26674399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of age on isometric endurance and fatigue is muscle dependent: a study of shoulder abduction and torso extension.
    Yassierli ; Nussbaum MA; Iridiastadi H; Wojcik LA
    Ergonomics; 2007 Jan; 50(1):26-45. PubMed ID: 17178650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The assessment of back muscle capacity using intermittent static contractions. Part I - Validity and reliability of electromyographic indices of fatigue.
    Larivière C; Gagnon D; Gravel D; Bertrand Arsenault A
    J Electromyogr Kinesiol; 2008 Dec; 18(6):1006-19. PubMed ID: 17643316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work.
    De Bock S; Rossini M; Lefeber D; Rodriguez-Guerrero C; Geeroms J; Meeusen R; De Pauw K
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3008-3020. PubMed ID: 35290183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergonomic evaluation of a wearable assistive device for overhead work.
    Rashedi E; Kim S; Nussbaum MA; Agnew MJ
    Ergonomics; 2014; 57(12):1864-74. PubMed ID: 25183258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Hand Location and Force Direction on Shoulder Muscular Activity in Females During Nonsagittal Multidirectional Overhead Exertions.
    Cudlip AC; Meszaros KA; Dickerson CR
    Hum Factors; 2016 Feb; 58(1):120-39. PubMed ID: 26757993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of a dynamic arm support for seated and standing tasks: a laboratory study of electromyography and subjective feedback.
    Odell D; Barr A; Goldberg R; Chung J; Rempel D
    Ergonomics; 2007 Apr; 50(4):520-35. PubMed ID: 17575713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cycle time influences the development of muscle fatigue at low to moderate levels of intermittent muscle contraction.
    Rashedi E; Nussbaum MA
    J Electromyogr Kinesiol; 2016 Jun; 28():37-45. PubMed ID: 26995711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.
    Bosch T; van Eck J; Knitel K; de Looze M
    Appl Ergon; 2016 May; 54():212-7. PubMed ID: 26851481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I - "Expected" effects on discomfort, shoulder muscle activity, and work task performance.
    Kim S; Nussbaum MA; Mokhlespour Esfahani MI; Alemi MM; Alabdulkarim S; Rashedi E
    Appl Ergon; 2018 Jul; 70():315-322. PubMed ID: 29525268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.