BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11549622)

  • 1. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation.
    Schmidt SL; Pautz AL; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34792-800. PubMed ID: 11549622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading.
    Schmidt SL; Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34784-91. PubMed ID: 11432854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement for ATP by the DNA damage checkpoint clamp loader.
    Majka J; Chung BY; Burgers PM
    J Biol Chem; 2004 May; 279(20):20921-6. PubMed ID: 15014082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions.
    Beckwith W; McAlear MA
    Mol Gen Genet; 2000 Nov; 264(4):378-91. PubMed ID: 11129041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PCNA-RFC families of DNA clamps and clamp loaders.
    Majka J; Burgers PM
    Prog Nucleic Acid Res Mol Biol; 2004; 78():227-60. PubMed ID: 15210332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivating pentapeptide insertions in the fission yeast replication factor C subunit Rfc2 cluster near the ATP-binding site and arginine finger motif.
    Gray FC; Whitehead KA; MacNeill SA
    FEBS J; 2009 Sep; 276(17):4803-13. PubMed ID: 19664060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading.
    Johnson A; Yao NY; Bowman GD; Kuriyan J; O'Donnell M
    J Biol Chem; 2006 Nov; 281(46):35531-43. PubMed ID: 16980295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway.
    Naiki T; Kondo T; Nakada D; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2001 Sep; 21(17):5838-45. PubMed ID: 11486023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA.
    Gomes XV; Schmidt SL; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34776-83. PubMed ID: 11432856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen.
    Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34768-75. PubMed ID: 11432853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae.
    Naiki T; Shimomura T; Kondo T; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2000 Aug; 20(16):5888-96. PubMed ID: 10913172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Destabilized PCNA trimers suppress defective Rfc1 proteins in vivo and in vitro.
    Beckwith WH; Sun Q; Bosso R; Gerik KJ; Burgers PM; McAlear MA
    Biochemistry; 1998 Mar; 37(11):3711-22. PubMed ID: 9521689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA.
    Ellison V; Stillman B
    PLoS Biol; 2003 Nov; 1(2):E33. PubMed ID: 14624239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae.
    Kim HS; Brill SJ
    Mol Cell Biol; 2001 Jun; 21(11):3725-37. PubMed ID: 11340166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen.
    Yao N; Coryell L; Zhang D; Georgescu RE; Finkelstein J; Coman MM; Hingorani MM; O'Donnell M
    J Biol Chem; 2003 Dec; 278(50):50744-53. PubMed ID: 14530260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RFC2 gene, encoding the third-largest subunit of the replication factor C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae.
    Noskov VN; Araki H; Sugino A
    Mol Cell Biol; 1998 Aug; 18(8):4914-23. PubMed ID: 9671499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant mutations in three different subunits of replication factor C suppress replication defects in yeast PCNA mutants.
    Amin NS; Tuffo KM; Holm C
    Genetics; 1999 Dec; 153(4):1617-28. PubMed ID: 10581271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Rad24 checkpoint protein complex closely related to replication factor C.
    Green CM; Erdjument-Bromage H; Tempst P; Lowndes NF
    Curr Biol; 2000 Jan; 10(1):39-42. PubMed ID: 10660302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the five replication factor C genes of Saccharomyces cerevisiae.
    Cullmann G; Fien K; Kobayashi R; Stillman B
    Mol Cell Biol; 1995 Sep; 15(9):4661-71. PubMed ID: 7651383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage-induced ubiquitylation of RFC2 subunit of replication factor C complex.
    Tomida J; Masuda Y; Hiroaki H; Ishikawa T; Song I; Tsurimoto T; Tateishi S; Shiomi T; Kamei Y; Kim J; Kamiya K; Vaziri C; Ohmori H; Todo T
    J Biol Chem; 2008 Apr; 283(14):9071-9. PubMed ID: 18245774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.