BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 11549751)

  • 1. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-spike timing of auditory-nerve fibers and comparison with auditory cortex.
    Heil P; Irvine DR
    J Neurophysiol; 1997 Nov; 78(5):2438-54. PubMed ID: 9356395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase Locking of Auditory-Nerve Fibers Reveals Stereotyped Distortions and an Exponential Transfer Function with a Level-Dependent Slope.
    Peterson AJ; Heil P
    J Neurosci; 2019 May; 39(21):4077-4099. PubMed ID: 30867259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coding of sound pressure level in the barn owl's auditory nerve.
    Köppl C; Yates G
    J Neurosci; 1999 Nov; 19(21):9674-86. PubMed ID: 10531469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unifying basis of auditory thresholds based on temporal summation.
    Heil P; Neubauer H
    Proc Natl Acad Sci U S A; 2003 May; 100(10):6151-6. PubMed ID: 12724527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auditory cortical onset responses revisited. I. First-spike timing.
    Heil P
    J Neurophysiol; 1997 May; 77(5):2616-41. PubMed ID: 9163380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics.
    Cooper NP; Robertson D; Yates GK
    J Neurophysiol; 1993 Jul; 70(1):370-86. PubMed ID: 8395584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sound coding in the auditory nerve of gerbils.
    Huet A; Batrel C; Tang Y; Desmadryl G; Wang J; Puel JL; Bourien J
    Hear Res; 2016 Aug; 338():32-9. PubMed ID: 27220483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.
    Ospeck M
    PLoS One; 2012; 7(3):e32384. PubMed ID: 22412868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Manifestations of dynamic coding of the amplitude-modulated sounds on the level of auditory nerve fibres].
    Rimskaia-Korsakova LK; Telepnev VN; Dubrovskiĭ NA
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):700-14. PubMed ID: 12966708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a unifying basis of auditory thresholds: the effects of hearing loss on temporal integration reconsidered.
    Neubauer H; Heil P
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):436-58. PubMed ID: 15675006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations.
    Wu JS; Young ED; Glowatzki E
    J Neurosci; 2016 Oct; 36(41):10584-10597. PubMed ID: 27733610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical cochlear stimulation in the deaf cat: comparisons between psychophysical and central auditory neuronal thresholds.
    Beitel RE; Snyder RL; Schreiner CE; Raggio MW; Leake PA
    J Neurophysiol; 2000 Apr; 83(4):2145-62. PubMed ID: 10758124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses.
    Avissar M; Furman AC; Saunders JC; Parsons TD
    J Neurosci; 2007 Jun; 27(24):6461-72. PubMed ID: 17567807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.