These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 11549847)

  • 1. High glucose concentrations stimulate renal papillary phosphatidylcholine biosynthesis.
    Setton-Avruj CP; Speziale EH; Sterin-Speziale NB
    Exp Nephrol; 2001; 9(5):301-8. PubMed ID: 11549847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renal phospholipid metabolism in streptozotocin-induced diabetic rats.
    Setton-Avruj CP; Sterin-Speziale NB
    Kidney Blood Press Res; 1996; 19(2):128-35. PubMed ID: 8871893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the increase in renal papillary phospholipid biosynthesis a protective mechanism against injury?
    Setton-Avruj CP; Fernández-Tomé MD; Negri A; Scerbo A; Arrizurieta E; Sterin-Speziale NB
    Kidney Blood Press Res; 1996; 19(1):38-45. PubMed ID: 8818116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COX-2-mediated PGD2 synthesis regulates phosphatidylcholine biosynthesis in rat renal papillary tissue.
    Fernández-Tome M; Kraemer L; Federman SC; Favale N; Speziale E; Sterin-Speziale N
    Biochem Pharmacol; 2004 Jan; 67(2):245-54. PubMed ID: 14698037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of phosphatidylcholine biosynthesis in diabetic hypertrophic kidneys.
    Suzuki Y; Fausto A; Hruska KA; Avioli LV
    Endocrinology; 1987 Feb; 120(2):595-601. PubMed ID: 3803292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid modulation of renal phosphatidylcholine biosynthesis in the rat.
    Havener LJ; Toback FG
    J Clin Invest; 1980 Mar; 65(3):741-5. PubMed ID: 7354136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p44/42(ERK1/2) MAPK and PLD activation by PGD2 preserves papillary phosphatidylcholine homeostasis.
    Fernández-Tome M; Favale N; Kraemer L; Gabriela Márquez M; Speziale E; Sterin-Speziale N
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1055-62. PubMed ID: 15249196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-acetyl-L-cysteine abolishes the bromoethylamine-induced choline incorporation into renal papillary tissue.
    Thielemann LE; Rodrigo RA; Oberhauser EW; Rosenblut G; Videla LA
    J Biochem Toxicol; 1995 Oct; 10(5):251-257. PubMed ID: 8847707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of lanreotide on local kidney IGF-I and renal growth in experimental diabetes in the rat.
    Grønbaek H; Nielsen B; Frystyk J; Flyvbjerg A; Orskov H
    Exp Nephrol; 1996; 4(5):295-303. PubMed ID: 8931985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of beta-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats.
    Cheng JT; Liu IM; Tzeng TF; Chen WC; Hayakawa S; Yamamoto T
    Horm Metab Res; 2003 Apr; 35(4):251-8. PubMed ID: 12778369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of phosphatidylcholine biosynthesis in activated alveolar type II cells.
    Miller BE; HooK GE
    Am J Respir Cell Mol Biol; 1989 Aug; 1(2):127-36. PubMed ID: 2559761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylcholine metabolism during renal growth and regeneration.
    Toback FG
    Am J Physiol; 1984 Mar; 246(3 Pt 2):F249-59. PubMed ID: 6367486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats.
    Palm F; Hansell P; Ronquist G; Waldenström A; Liss P; Carlsson PO
    Diabetologia; 2004 Jul; 47(7):1223-1231. PubMed ID: 15232683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle phospholipid metabolism in streptozotocin-diabetic rats.
    Zendzian-Piotrowska M; Górska M; Chocian G; Górski J
    Acta Diabetol; 1999 Jun; 36(1-2):107-11. PubMed ID: 10755824
    [No Abstract]   [Full Text] [Related]  

  • 15. Impact of renal denervation on renal content of GLUT1, albuminuria and urinary TGF-beta1 in streptozotocin-induced diabetic rats.
    D'Agord Schaan B; Lacchini S; Bertoluci MC; Irigoyen MC; Machado UF; Schmid H
    Auton Neurosci; 2003 Mar; 104(2):88-94. PubMed ID: 12648610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duration of streptozotocin-induced diabetes differentially affects p38-mitogen-activated protein kinase (MAPK) phosphorylation in renal and vascular dysfunction.
    Chen H; Brahmbhatt S; Gupta A; Sharma AC
    Cardiovasc Diabetol; 2005 Mar; 4():3. PubMed ID: 15748291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain tissue from streptozotocin-diabetic rats.
    Kainulainen H; Schürmann A; Vilja P; Joost HG
    Acta Physiol Scand; 1993 Oct; 149(2):221-5. PubMed ID: 8266811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats.
    Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY
    Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary fat saturation alters diabetic rat brush border membrane phospholipid fatty acid composition.
    Keelan M; Wierzbicki AA; Clandinin MT; Walker K; Rajotte RV; Thomson AB
    Diabetes Res; 1990 Aug; 14(4):159-64. PubMed ID: 2132188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.