BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11550298)

  • 1. Thromboxane synthase regulates the migratory phenotype of human glioma cells.
    Giese A; Hagel C; Kim EL; Zapf S; Djawaheri J; Berens ME; Westphal M
    Neuro Oncol; 1999 Jan; 1(1):3-13. PubMed ID: 11550298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thromboxane synthase inhibitors induce apoptosis in migration-arrested glioma cells.
    Yoshizato K; Zapf S; Westphal M; Berens ME; Giese A
    Neurosurgery; 2002 Feb; 50(2):343-54. PubMed ID: 11844270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation.
    Schauff AK; Kim EL; Leppert J; Nadrowitz R; Wuestenberg R; Brockmann MA; Giese A
    J Neurooncol; 2009 Feb; 91(3):241-9. PubMed ID: 18825315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase.
    McDonough W; Tran N; Giese A; Norman SA; Berens ME
    J Neuropathol Exp Neurol; 1998 May; 57(5):449-55. PubMed ID: 9596415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of the arachidonic acid metabolism blocks endothelial cell migration and induces apoptosis.
    Jantke J; Ladehoff M; Kürzel F; Zapf S; Kim E; Giese A
    Acta Neurochir (Wien); 2004 May; 146(5):483-94. PubMed ID: 15118886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclo-oxygenase inhibitors and thromboxane synthase inhibitors differentially regulate migration arrest, growth inhibition and apoptosis in human glioma cells.
    Kürzel F; Hagel Ch; Zapf S; Meissner H; Westphal M; Giese A
    Acta Neurochir (Wien); 2002 Jan; 144(1):71-87. PubMed ID: 11807649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The "go or grow" potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress.
    Höring E; Harter PN; Seznec J; Schittenhelm J; Bühring HJ; Bhattacharyya S; von Hattingen E; Zachskorn C; Mittelbronn M; Naumann U
    Acta Neuropathol; 2012 Jul; 124(1):83-97. PubMed ID: 22249620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration.
    Dey N; Crosswell HE; De P; Parsons R; Peng Q; Su JD; Durden DL
    Cancer Res; 2008 Mar; 68(6):1862-71. PubMed ID: 18339867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of okadaic-acid-induced genes by mRNA differential display in glioma cells.
    Chin LS; Singh SK; Wang Q; Murray SF
    J Biomed Sci; 2000; 7(2):152-9. PubMed ID: 10754390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells.
    Besson A; Davy A; Robbins SM; Yong VW
    Oncogene; 2001 Nov; 20(50):7398-407. PubMed ID: 11704869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autocrine control of glioma cells adhesion and migration through IRE1α-mediated cleavage of SPARC mRNA.
    Dejeans N; Pluquet O; Lhomond S; Grise F; Bouchecareilh M; Juin A; Meynard-Cadars M; Bidaud-Meynard A; Gentil C; Moreau V; Saltel F; Chevet E
    J Cell Sci; 2012 Sep; 125(Pt 18):4278-87. PubMed ID: 22718352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of serotonin receptors in human fetal astrocytes and glioma cell lines: a possible role in glioma cell proliferation and migration.
    Merzak A; Koochekpour S; Fillion MP; Fillion G; Pilkington GJ
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):1-7. PubMed ID: 8883928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of cyclooxygenase-2 expression by interleukin-1beta in human glioma cell line, U87MG.
    Taniura S; Kamitani H; Watanabe T; Eling TE
    Neurol Med Chir (Tokyo); 2008; 48(11):500-5; discussion 505. PubMed ID: 19029777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leptin induces migration and invasion of glioma cells through MMP-13 production.
    Yeh WL; Lu DY; Lee MJ; Fu WM
    Glia; 2009 Mar; 57(4):454-64. PubMed ID: 18814267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis.
    Joy AM; Beaudry CE; Tran NL; Ponce FA; Holz DR; Demuth T; Berens ME
    J Cell Sci; 2003 Nov; 116(Pt 21):4409-17. PubMed ID: 13130092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological mechanisms of glioma invasion and potential therapeutic targets.
    Tysnes BB; Mahesparan R
    J Neurooncol; 2001 Jun; 53(2):129-47. PubMed ID: 11716066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased cyclin B1 expression contributes to G2 delay in human brain tumor cells after treatment with camptothecin.
    Janss AJ; Maity A; Tang CB; Muschel RJ; McKenna WG; Sutton L; Phillips PC
    Neuro Oncol; 2001 Jan; 3(1):11-21. PubMed ID: 11305412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells.
    Nakada M; Niska JA; Miyamori H; McDonough WS; Wu J; Sato H; Berens ME
    Cancer Res; 2004 May; 64(9):3179-85. PubMed ID: 15126357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of p33ING1 mRNA and chemosensitivity in brain tumor cells.
    Tallen G; Riabowol K; Wolff JE
    Anticancer Res; 2003; 23(2B):1631-5. PubMed ID: 12820433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD164 regulates proliferation and apoptosis by targeting PTEN in human glioma.
    Tu M; Cai L; Zheng W; Su Z; Chen Y; Qi S
    Mol Med Rep; 2017 Apr; 15(4):1713-1721. PubMed ID: 28259931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.