BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11551215)

  • 1. Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B.
    Boehlein SK; Nakatsu T; Hiratake J; Thirumoorthy R; Stewart JD; Richards NG; Schuster SM
    Biochemistry; 2001 Sep; 40(37):11168-75. PubMed ID: 11551215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the steady state kinetic mechanism of glutamine-dependent asparagine synthetase from Escherichia coli.
    Tesson AR; Soper TS; Ciustea M; Richards NG
    Arch Biochem Biophys; 2003 May; 413(1):23-31. PubMed ID: 12706338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit interaction in unadenylylated glutamine synthetase from Escherichia coli. Evidence from methionine sulfoximine inhibition studies.
    Rhee SG; Chock PB; Wedler FC; Sugiyama Y
    J Biol Chem; 1981 Jan; 256(2):644-8. PubMed ID: 6108959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamic acid gamma-monohydroxamate and hydroxylamine are alternate substrates for Escherichia coli asparagine synthetase B.
    Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3031-7. PubMed ID: 8608142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism of Escherichia coli asparagine synthetase B.
    Boehlein SK; Stewart JD; Walworth ES; Thirumoorthy R; Richards NG; Schuster SM
    Biochemistry; 1998 Sep; 37(38):13230-8. PubMed ID: 9748330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N2-hydroxyguanosine 5'-monophosphate is a time-dependent inhibitor of Escherichia coli guanosine monophosphate synthetase.
    Deras ML; Chittur SV; Davisson VJ
    Biochemistry; 1999 Jan; 38(1):303-10. PubMed ID: 9890911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B.
    Boehlein SK; Walworth ES; Richards NG; Schuster SM
    J Biol Chem; 1997 May; 272(19):12384-92. PubMed ID: 9139684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the aspartic acid binding site of Escherichia coli asparagine synthetase B using substrate analogs.
    Parr IB; Boehlein SK; Dribben AB; Schuster SM; Richards NG
    J Med Chem; 1996 Jun; 39(12):2367-78. PubMed ID: 8691431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine 30 and asparagine 74 have functional roles in the glutamine dependent activities of Escherichia coli asparagine synthetase B.
    Boehlein SK; Richards NG; Walworth ES; Schuster SM
    J Biol Chem; 1994 Oct; 269(43):26789-95. PubMed ID: 7929415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad.
    Boehlein SK; Richards NG; Schuster SM
    J Biol Chem; 1994 Mar; 269(10):7450-7. PubMed ID: 7907328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of cysteine-523 in the aspartate binding site of Escherichia coli asparagine synthetase B.
    Boehlein SK; Walworth ES; Schuster SM
    Biochemistry; 1997 Aug; 36(33):10168-77. PubMed ID: 9254614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of active-site ligand binding to Escherichia coli glutamine synthetase.
    Ginsburg A; Gorman EG; Neece SH; Blackburn MB
    Biochemistry; 1987 Sep; 26(19):5989-96. PubMed ID: 2891374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and aminoacyl-tRNA synthetase inhibitory activity of aspartyl adenylate analogs.
    Bernier S; Akochy PM; Lapointe J; ChĂȘnevert R
    Bioorg Med Chem; 2005 Jan; 13(1):69-75. PubMed ID: 15582453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects.
    Stoker PW; O'Leary MH; Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3024-30. PubMed ID: 8608141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivation of glutamine synthetase from Escherichia coli after auto-inactivation with L-methionine-S-sulfoximine, ATP, and Mn2+.
    Maurizi MR; Ginsburg A
    J Biol Chem; 1982 Apr; 257(8):4271-8. PubMed ID: 6121801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoaffinity labeling with the activator IMP and site-directed mutagenesis of histidine 995 of carbamoyl phosphate synthetase from Escherichia coli demonstrate that the binding site for IMP overlaps with that for the inhibitor UMP.
    Bueso J; Cervera J; Fresquet V; Marina A; Lusty CJ; Rubio V
    Biochemistry; 1999 Mar; 38(13):3910-7. PubMed ID: 10194302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glutamine hydrolysis function of human GMP synthetase. Identification of an essential active site cysteine.
    Nakamura J; Straub K; Wu J; Lou L
    J Biol Chem; 1995 Oct; 270(40):23450-5. PubMed ID: 7559506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A convenient gHMQC-based NMR assay for investigating ammonia channeling in glutamine-dependent amidotransferases: studies of Escherichia coli asparagine synthetase B.
    Li KK; Beeson WT; Ghiviriga I; Richards NG
    Biochemistry; 2007 Apr; 46(16):4840-9. PubMed ID: 17397190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of intermediate and transition-state analogue inhibitors of gamma-glutamyl peptide ligases.
    Inoue M; Hiratake J; Sakata K
    Biosci Biotechnol Biochem; 1999 Dec; 63(12):2248-51. PubMed ID: 10664863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product.
    Larsen TM; Boehlein SK; Schuster SM; Richards NG; Thoden JB; Holden HM; Rayment I
    Biochemistry; 1999 Dec; 38(49):16146-57. PubMed ID: 10587437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.