These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11551435)

  • 1. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH.
    Grigsby JJ; Blanch HW; Prausnitz JM
    Biophys Chem; 2001 Jul; 91(3):231-43. PubMed ID: 11551435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloud-point temperatures of lysozyme in electrolyte solutions by thermooptical analysis technique.
    Park EJ; Bae YC
    Biophys Chem; 2004 Apr; 109(1):169-88. PubMed ID: 15059669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes.
    Curtis RA; Prausnitz JM; Blanch HW
    Biotechnol Bioeng; 1998 Jan; 57(1):11-21. PubMed ID: 10099173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-liquid coexistence surface for lysozyme: role of salt type and salt concentration.
    Wentzel N; Gunton JD
    J Phys Chem B; 2007 Feb; 111(6):1478-81. PubMed ID: 17243665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions.
    Gokarn YR; Fesinmeyer RM; Saluja A; Razinkov V; Chase SF; Laue TM; Brems DN
    Protein Sci; 2011 Mar; 20(3):580-7. PubMed ID: 21432935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.
    Kuehner DE; Heyer C; Rämsch C; Fornefeld UM; Blanch HW; Prausnitz JM
    Biophys J; 1997 Dec; 73(6):3211-24. PubMed ID: 9414232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific ion effects: why the properties of lysozyme in salt solutions follow a Hofmeister series.
    Boström M; Williams DR; Ninham BW
    Biophys J; 2003 Aug; 85(2):686-94. PubMed ID: 12885620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic forces between protein molecules in aqueous solutions of concentrated electrolyte.
    Curtis RA; Steinbrecher C; Heinemann M; Blanch HW; Prausnitz JM
    Biophys Chem; 2002 Aug; 98(3):249-65. PubMed ID: 12128178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysozyme-lysozyme and lysozyme-salt interactions in the aqueous saline solution: a new square-well potential.
    Chang BH; Bae YC
    Biomacromolecules; 2003; 4(6):1713-8. PubMed ID: 14606900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive Ion Pairing and the Role of Anions in the Behavior of Hydrated Electrons in Electrolytes.
    Narvaez WA; Park SJ; Schwartz BJ
    J Phys Chem B; 2022 Oct; 126(39):7701-7708. PubMed ID: 36166380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-induced liquid-liquid phase separation of protein-surfactant complexes.
    Narayanan J; Deotare VW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4597-603. PubMed ID: 11970320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.
    Müller E; Josic D; Schröder T; Moosmann A
    J Chromatogr A; 2010 Jul; 1217(28):4696-703. PubMed ID: 20570270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen-17 and deuterium nuclear magnetic relaxation studies of lysozyme hydration in solution: field dispersion, concentration, pH/pD, and protein activity dependences.
    Kakalis LT; Baianu IC
    Arch Biochem Biophys; 1988 Dec; 267(2):829-41. PubMed ID: 3214182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additivity of the Specific Effects of Additives on Protein Phase Behavior.
    Platten F; Hansen J; Milius J; Wagner D; Egelhaaf SU
    J Phys Chem B; 2015 Dec; 119(48):14986-93. PubMed ID: 26545156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible origin of the inverse and direct Hofmeister series for lysozyme at low and high salt concentrations.
    Boström M; Parsons DF; Salis A; Ninham BW; Monduzzi M
    Langmuir; 2011 Aug; 27(15):9504-11. PubMed ID: 21692476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen exchange of lysozyme powders. Hydration dependence of internal motions.
    Schinkel JE; Downer NW; Rupley JA
    Biochemistry; 1985 Jan; 24(2):352-66. PubMed ID: 3978078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions.
    Kalyuzhnyi YV; Vlachy V
    J Chem Phys; 2016 Jun; 144(21):215101. PubMed ID: 27276970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ON THE LOCATION OF THE FORCES WHICH DETERMINE THE ELECTRICAL DOUBLE LAYER BETWEEN COLLODION PARTICLES AND WATER.
    Loeb J
    J Gen Physiol; 1923 Sep; 6(1):105-29. PubMed ID: 19872044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions.
    Parmar AS; Muschol M
    Biophys J; 2009 Jul; 97(2):590-8. PubMed ID: 19619474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-protein interactions in concentrated electrolyte solutions.
    Curtis RA; Ulrich J; Montaser A; Prausnitz JM; Blanch HW
    Biotechnol Bioeng; 2002 Aug; 79(4):367-80. PubMed ID: 12115400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.